

An Algorithm for Random Fractal Filling of Space

John Shier1 and Paul Bourke2

Email: paul.bourke@uwa.edu.au

1Normandale Community College, Bloomington, Minnesota 55431, USA.
2iVEC @ University of Western Australia, 35 Stirling Hwy, Crawley, West Australia 6009, Australia.

Abstract
Computational experiments with a simple algorithm show that it is possible to fill any spatial
region with a random fractalization of any shape, with a continuous range of pre-specified fractal
dimensions D. The algorithm is presented here in 1, 2, or 3 physical dimensions. The size power-
law exponent c or the fractal dimension D can be specified ab initio over a substantial range. The
method creates an infinite set of shapes whose areas (lengths, volumes) obey a power law and sum
to the area (length, volume) to be filled. The algorithm begins by randomly placing the largest
shape and continues using random search to place each smaller shape where it does not overlap or
touch any previously placed shape. The resulting gasket is a single connected object.

Categories and Subject Descriptors (according to ACM CCS):G.3 [Mathematics of Computing]:
Probability and Statistics--Stochastic processes, I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling--Geometric algorithms, languages, and systems, I.3.m [Computer
Graphics]: Miscellaneous

1. Introduction

There has long been interest in systematic ways of
filling space with distinct shapes. Two-dimensional
tilings in which space is filled by repetition of the
same shape have been known since antiquity and are
widely used in decorative art. The checkerboard is
perhaps the simplest example of such a tiling.

In the early 20th century recursive fractal methods
for filling 2D space with an infinite number of shapes
were discovered. One of the best known is the triangle
construction of Sierpinski [Man77]. Sierpinski started
with a filled triangle and successively removed
smaller triangles. His construction can be space filling
if the opposite procedure is followed where one
begins with an empty triangle and recursively adds
ever-smaller triangles. Thus 2D space is filled in the
limit with an infinite number of ever-smaller similar
triangles. Such recursive fractals have a single
specific fractal dimension D (D = log(3)/log(2) for
Sierpinski triangles). Fractal studies in physics
[DW02] [DW03] [DHA08] generally proceed by
adding shapes to an empty region, while
mathematicians prefer the opposite procedure where a
filled region is emptied by successive deletions
("tremas" in Mandelbrot's usage). Where it makes a
difference we have followed the physics usage.

Following the publication of Mandelbrot's book
[Man77] fractals have been found to be useful models
in physics, geology, economics, and many other areas
[Buc00] [Bal04]. Such fractals characteristically deal
with random events whose statistical distributions
follow a power law. The distribution of earthquake
magnitudes [Buc00] is one of the most well known

examples. Physicists have used fractal ideas to model
and study the random packing of various shapes, with
the goal of understanding how fractured materials
behave [DW02] [DW03] [DHA08]. Such packing
studies generally impose the condition that the shapes
have mutual contact (kissing) points, and the random
patterns that appear are found by computer
simulation.

Figure 1: Toroidal rings fractalized within a cube.
The ring cross sectional radius is 15% of the radius
from the center of the hole to the center of the ring.
The parameters are: 1000 shapes, c = 1.1, N = 2 with
a 68% fill. Inclusive boundary conditions.

The space filling algorithm described here differs
from the usual packing algorithms [DW02] [DW03]
[DHA08] in that the shapes have no contact points
[Sod36] [KS43], and the fractal dimension D rather
than being determined from simulated data can be
specified at the outset over a substantial and
continuous range of values. A common class of
packing algorithms randomly sample the area for an
available location for the next shape and then grow a
placed object until it touches a neighbor. The
algorithm presented here does not involve growing
shapes to fill voids but rather the size of the next
shape is entirely predetermined. The algorithm will be
described in detail in section 2 of this paper.

Figure 2: A two-dimensional fractal based upon an
annular ring shape. The inner circle is 2/3 the radius
of the outer circle. The parameters are: 2000 shapes,
c = 1.2, N = 2 with a 78% fill. Inclusive boundary
conditions.

In determining the behavior and features of the
algorithm the authors have proceeded using the
inductive method commonly applied in physics. By
carrying out computational experiments, simulations
if you will, the authors have reached conclusions
based on consistent patterns seen in the results of
thousands of computer runs. Thus the paper does not
offer any formal proofs. From the viewpoint of pure
mathematics all of the mathematical claims made here
can be thought of as conjectures. The terminology for
fractals used in the paper generally follows
Mandelbrot [Man77].

What uses can be found for this algorithm? The
paper [BS13] by the authors describes how it might be
used to create procedural textures in computer games
and graphics in general. The web sites [SB12] contain
many examples of the 2D algorithm used as art, in
which it can be seen that the algorithm can produce a
rich variety of engaging imagery. The many real-
world fractal distributions described in [Buc00]
[Bal04] largely lack physical or geometric models. It
is anticipated that the algorithm described, should it

become widely known, may allow geometric
modeling of some of the random phenomena found in
various fields. Several natural objects have a visual
appearance similar to the images generated here; these
include but are not limited to bubbles on the surface
of liquids, pore spaces in breads, and certain
geological structures.

Figure 1 is an example of applying the algorithm
in three dimensions, filling a cubic region using
toroidal rings. There are in total five degrees of
freedom in the placement of each ring, position (x,y,z)
and two orientation angles. It can be seen that this
fractal has random topology; note for example how
some of the rings are chain-linked to others.

Figure 3: A one-dimensional fractal. The upper
image shows the complete fractal with periodic
boundary conditions. The subsequent images are
zoomed into the central 5% of the previous image
with obvious self-similarity. The parameters are:
30,000 shapes, c = 1.4, N = 1 with a 99.98% fill.

Figure 2 presents a two dimensional case where a
square bounded region is filled with annular rings.
With hollow shapes such as these it can be seen that
the smaller shapes may end up being placed either
inside or outside of previously placed shapes. There is
strong correlation in the form of "nesting".

Figure 3 is an example in one dimension. The one-
dimensional case is particularly simple and there are a
limited number of possible shapes. Very large
percentage fills can be achieved and the self-similar
nature at each level of zoom is evident. Here the line
segments of length Li are represented as circles of
diameter Li to improve the visualization.

2. The statistical geometry algorithm

In the following description of the algorithm we
will consider the two-dimensional case. Let A be the
total area to be filled. We define a sequence of areas
Ai (i = 0, 1, …) given by the rule

ci NiNc

AA
))(,(+

=
ζ

 (1)

where ζ(c,N) is the Hurwitz zeta function [AS64]
defined by

∑
∞

= +
=

0)(
1),(

i
cNi

Ncζ (2)

This is known to converge for c >1 and N > 0.

In view of equation 2 one can write

A

NiNc
AA

i
c

i
i =

+
=∑∑

∞

=

∞

= 00))(,(ζ
 (3)

such that the sum of all areas Ai is the total area A to
be filled, that is, if the algorithm does not halt then it
is space-filling. The parameters c and N can be chosen
over a substantial range of values. Parameter N need
not be an integer in the formulation above, but integer
values are used in the examples and discussion
presented. The general influence of parameters c and
N can be illustrated in figure 4. For higher values of c
the initial shapes have a larger area but as i increases
the area falls off more quickly. Similarly for smaller
N the initial shapes are larger but fall off more quickly
as i increases.

The algorithm as implemented by a computer
simulation can be described as follows.

Step 1. Let i = 0. Place a shape with area A0 at a
random position within the area A of the region to be
filled such that it does not overlap the boundary. (See
later where this is relaxed in the case of periodic
boundary conditions). Place the position and
dimensions of the shape in the placed-shapes
database. Increment i. This is referred to as the initial
placement.

Step 2. (iteractive). Choose a random candidate
position for a new shape with area Ai, again, entirely
within the boundary of the region to be filled. This is
a trial. Test whether shape Ai overlaps any previously
placed shape? If it does then repeat step 2. If not then
place the position and dimensions of the shape in the
placed-shapes database, increment i, and repeat step
2. This is referred to as a placement. Stop when a
desired number n of placed shapes has been reached
or a chosen percentage fill has been achieved.

The result is a random fractal space-filling
collection of shapes within a fixed boundary whose
areas follow a power-law sequence.

Only step 2 is iterative. This is a very simple
process. The two parameters c and N allow the
statistical and visual properties to be varied. The
algorithm is not dependent on the exact shape;
experimental evidence to date indicates that the
algorithm works (within some range of c values) for
any shape. Implementing this space-filling algorithm
for any particular shape requires three things:

(1) A relationship between the linear dimensions
(scale) and the area of the shape.

(2) An intersection test between two shapes, that is,
"Does shape 1 in the current proposed position, scale,

and orientation intersect with shape 2 at its existing
position, scale, and orientation?"

(3) An intersection test of a shape at a particular
position, scale, and orientation with the boundary of
the region being filled.

The position probability distribution for trials in
the algorithm as presented is taken to be uniform, that
is, every position is equally probable. This is not a
requirement but whatever distribution is used it must
obviously span the entire area, a uniform distribution
is chosen here as an unbiased sampling.

It is believed that the algorithm can be used with
any shape or combination of multiple shapes having
the area sequence defined in equation 1. Geometric
similarity of the shapes is not a requirement. Shapes
studied in 2D include circles, squares, squares with
random rotation, rectangles with various aspect ratios,
mixed squares and circles, annular rings, blobs,
eights, ells, triangles, arrows, lenses, crescents, stars,
gears, diamonds, bicircles, quadcircles, and
quadsquares. 3D shapes tested include spheres, cubes,
tetrahedra, octahedra, and torii. These and other
examples can be found at the authors' web sites
[SB12].

The algorithm description and equations 1 to 3
refer to areas since the algorithm has been introduced
in two dimensions. In one dimension the formulation
can be reduced to line segments (lengths) and in three
dimensions it can be extended to volumes. As such it
can also be extended into higher dimensions and to
the corresponding hyper-volumes.

Figure 4. The effect of different values of c and N on
the function for the area on the i’th iteration from
equation 1.

The algorithm was introduced for shapes not

crossing the boundary of A (referred to here as an
inclusive boundary). It works equally well with a
periodic rectangular boundary of lengths Lx and Ly. In
this case the intersection test for placement needs to
consider the object also appearing at positions x ± Lx
and y ± Ly. When a new shape placement is accepted
and if it crosses any boundary then the same shape is

placed in the database at x ± Lx and/or y ± Ly to ensure
periodicity. See figure 8 as an example of periodic
boundary conditions, in these cases the image can be
seamlessly tiled.

The c parameter relates directly to fractal
dimension D (section 5). The larger the value of c is,
the more rapidly the sizes of the shapes diminish as
more shapes are placed. There is a largest c value that
varies depending on the shape in question and the
region being filled (section 3). The number of trials
required depends very strongly on c, see figure 5. The
N parameter can be used to adjust the size of the
largest shape. When N is large, the first few shapes
are smaller than with a low N value, and their areas
fall off more slowly with the number of placements.
The fractal dimension D is independent of the value
of N.

The concept of a maximum c value is developed
more fully in section 3 of the paper. The minimum c
value only has the requirement that c be > 1. Compact
and convex shapes such as circles or squares
generally have higher maximum c values than
concave or convoluted shapes. Of the 2D shapes
studied, squares have the highest maximum c value.
Squares require fewer trials per placement than any
other shape studied in 2D. The highest c value in 1D
is about 2.7 (with N = 1); for 2D it is about 1.57
(squares), and for 3D it is about 1.2 (cubes). The
dividing line between c values where fractalization is
possible or not is not a sharp one since it can depend
on the position of the first random placement, see
later.

If the random numbers and length parameters used
in the algorithm are thought of as having infinite
precision the probability of two shapes actually
touching is vanishingly small. The placement of a
given shape is random, but this is a highly constrained
randomness, influenced by all of the previous
placements. At any given step placement is dependent
on the entire prior history of the process.

3. Does the algorithm halt?

We say that the algorithm has halted when it
arrives at a state where there is no place in the gasket
large enough to accommodate the next-to-be-placed
shape. We present evidence that within a range of c
values > 1 and below some limiting value the
algorithm runs without halting. This evidence is based
upon large numbers of computer experiments often
designed explicitly to find halting examples.

It can be seen in figure 5 that the trials data follow
a reasonably straight line in log-log coordinates as the
cumulative number of trials becomes large, indicating
that the cumulative number of trials obeys an
approximate power law versus n. The data has less
scatter for low values of c, and increasing scatter for
higher values of c. Such an approximate power law
was seen for all cases studied. This indicates that any
number of shapes can be placed with a finite (but
possibly large) number of trials for the c and N values

shown in figure 5 and that the algorithm does not halt
simply because n becomes large. It is evident from
figure 5 that as n increases (area of remaining gasket
decreases) the number of trials needed to place a
shape can become extremely large. Thus the
algorithm becomes increasingly inefficient and this is
especially so for large c values. The amount of noise
and fluctuation in the process is also greater for large
c values (upper curves).

Figure 5: Log-log plots for the cumulative number nt
of trials (vertical) versus the number n of placed
shapes (horizontal) for squares and circles. For the
circles the c values are (from the bottom): 1.20, 1.25,
1.30, 1.35, 1.40. For the squares the c values are
(from the bottom): 1.20, 1.25, 1.30, 1.35, 1.40, 1.45.
Data from five runs is shown for each c value. In all
cases N = 1.

If we undertake regression of the data of figure 5
to estimate the exponent in the underlying power law,
the exponent for the smooth data at large n values is
found to be approximately equal to c.

It is usual in programming random searches to
place an upper limit on the number of trials, stopping
the algorithm when this is exceeded. A failure of this
kind is not halting in the sense defined above. For
many of the examples presented here the value of n
has been chosen relatively low to improve the
appearance of the figure given the limited resolution
available.

The algorithm does halt for large c values. One
cause of this is the geometry of the first few shapes.
Consider the case of squares fractalized within a
square. The best case for placement of the first two
squares is one where the first square abuts one corner
of the bounding square and the second abuts the
diagonally opposite corner. This state leaves the
greatest amount of room for subsequent squares. If the
widths of the first squares are w0 and w1 respectively
it is evident that if w0 + w1 exceeds the width of the
bounding square it is not possible to place both square
0 and square 1 by random search and the algorithm
halts. Calculations show that when N = 1 this occurs
for c = 1.5224, which is thus a hard upper limit on
usable c values for squares. When high values of c are

tried with N = 1 it is found that as one approaches c =
1.50 from below the number of runs which halt
increases rapidly. Most observed halting events of this
kind have been found in the first ~100 placements.

Changes in the value of N has only a modest effect
on the maximum allowed value of c, with larger N
values leading to somewhat increased maximum c
values. In practice the algorithm has been observed to
run without halting for any c value greater than 1 and
less than the maximum c.

If N > 1 the requirements imposed by the
geometry of the first few shapes are more relaxed
since the first few shapes are nearly the same size or
smaller. For larger N values it has been found possible
to make successful computer runs for squares with c
values up to ~1.57.

For the example of squares where N = 1, and c ≤
1.45, as in the data of figure 5, halting has not been
observed to date in hundreds of runs. For these
parameters the evidence is that the algorithm does not
halt. While formal proofs are lacking, the algorithm
runs without stopping in practice and applications in
games, visual art, and modeling are also not subject to
halting problems. The largest usable c value depends
on the shape fractalized, and is in general highest for
simple shapes (for example, circles and squares) and
lowest for concave and convoluted shapes.

It is difficult to make meaningful comparisons
between the 1D, 2D, and 3D cases because, for
example, a circle is not a sphere, and the maximum c
values do depend on the dimension. Several trends
can however be observed. If 2D and 3D cases are run
near their maximum c values, it generally requires far
more trials to reach a given percentage fill for 3D.
The same holds for 1D and 2D cases; the 2D case
requires more trials.

The evidence from experience running the
algorithm with a wide variety of c, N, and shapes is
that there is a wide range of c values from 1 up to
some critical value where halting is never observed.
Proof of this would be interesting, but at the present
time it must be a conjecture supported by data. In
order to put this on a quantitative basis a large number
of runs were made for circles fractalized in a square
(N = 1) with various c values and the number of
halting events was determined, see figure 6.

The open circles show data from 2000 circle runs
for each point, with inclusive boundaries. There were
no halting events at all for the point with lowest c.
The squares show similar data from 3000 circle runs
with periodic boundaries. For inclusive boundaries a
run was taken to be non-halting if it did not halt in
8,000,000 trials at any placement. For periodic
boundaries the run was taken to be non-halting if it
did not halt in 6,000,000 trials. Most halting events
occurred by the first 50 placements.

These results can be summarized as "The
algorithm never halts for sufficiently low c and
always halts for sufficiently high values of c". The

halting probability traces out a smooth curve between
the non-halting and the halting regions.

Figure 6. Halting probability as a function of c for
circles fractalized in a square with inclusive and
periodic boundaries.

The argument about fitting of the first two shapes

made above for squares becomes much more
complicated when we consider periodic boundaries.
Here each shape which overlaps the boundary has one
or more "partners" located at x ± Lx and/or y ± Ly,
where Lx and Ly are the dimensions of the bounding
rectangle. The fact that runs with periodic boundaries
do not halt over a wider c range suggests that the
fitting of the first few shapes is less constrained with
periodic boundaries.

Why is the maximum c lower for a less compact
shape? Consider a shape that is a square frame of side
length u, with a square of side length du cut out of its
middle (i.e., it is a hollow shape). Assume this shape
is fractalized (inclusive boundaries) in a square of
side length s. Consider the first three iterations
resulting in a placement of shape number 0, 1 and 2.
The side lengths s0 and s1 of the first two shapes will
be larger than for a solid square of the same area, and
it is found when d = 2/3 that s0 + s1 > s when c =
1.2313. However, at this c value it is possible for
shape 1 to fit inside of shape 0 (possible but
improbable in a random search). When c reaches
1.2936 we find so that s0 + s2 > s so that shapes 0 and
2 no longer fit and all runs will halt for c > 1.2936.
This is much lower than the corresponding value c =
1.5224 for a compact non-hollow square, and shows
by example how a less compact shape lowers the
maximum c value.

4. The average gasket width

Is there always a large enough space in the gasket
to place more shapes? It is interesting to track the
average gasket width versus the linear dimension(s) of
the shapes being placed. Let Ag(n) be the total gasket
area after the nth placement, and Pg(n) be the total
gasket perimeter after the nth placement. The gasket
has a quite irregular shape, so the following definition
of the average gasket width has been assumed (in
2D):

)(
)(

),,(
nP
nA

nNcw
g

g
g = (4)

This quantity has the units of length and can be
computed for any shape. In what follows we will
assume circles. If we divide g by the diameter of the
next-to-be-placed circle we have a dimensionless
average gasket width b(c,N,n). This is a measure of
the relative amount of space available for the next
circle and is given by

 12)(
)(

),,(
+⋅

=
ng

g

rnP
nA

nNcb (5)

where rn+1 is the radius of circle n+1. This is a
dimensionless non-random quantity that is invariant
with respect to the particular random placements
used. For circles the area and radius of the ith circle
are

ci NiNc

AA
))(,(+

=
ζ

 (6)

2/)(

1
),(ci NiNc

Ar
+

=
πζ

(7)

whence

∑

∑

=

=

+++

+
−

= n

i
cc

n

i
c

NiNn

Ni
Nc

nNcb

0
2/2/

0

)(
1

)1(
1

)(
1),(

4
1),,(

ζ
 (8)

This quantity can be readily computed and the
results for the case of a circle are given in table 1 (for
N = 1) along with the average number of trials per
placement.

It is seen that b(c,1,n) appears to go to a finite
limit as n → ∞, and that b(c,1,n) changes very little
with n for large values of n, although it does show a
strong variation with c. Since b(c,1,n) is a measure of
the relative space available for placement of the next
circle, the interpretation of these results is that there is
a "just in time" relationship such that the space
available for placement falls in direct proportion to
the size of the circle to be placed. This helps to
explain why the algorithm does not halt. Computer
runs placing a million circles have been performed
with no sign of halting.

The variation of b(c,1,n) with c shows that c
controls the average spacing between shapes. With
low c the average spacing between shapes is relatively
large, while for high c values the spacing can become
quite small. It is also seen that the patterns are more
ordered (less random) for large c values than for small
c values.

The dimensionless gasket width b(c,N,n) provides
an average measure of the amount of "wiggle room"
available at placement for a given c, N, and n. It can
be seen that b drops rapidly as c increases for all n
values, indicating that as c rises there are fewer places

that can accommodate random placement of the next
circle. This dependence shows itself in the steep
increase in the number of trials needed for a
placement as c increases and the steadily tighter
fitting of the shapes. As n increases b decreases, but
at a steadily smaller rate. For the highest n values in
table 1 the drop is very small. For example when c =
1.32, b only drops by 0.9 percent as n goes from
100,000 to 1,000,000. This shows that for large
values of n the available space for the next placement
is falling at about the same rate as the diameter of the
next circle, which helps to explain the observation
that the algorithm does not halt.

The much steeper drop of b as n increases during
the first 100 placements supports the observation that
when a run halts it does so during the early
placements.

It is not possible to determine if b goes to a finite
limit when n → ∞ from the numerical data in table 1,
although b changes very slowly when n is large.

Table 1. Values of the dimensionless gasket width for
circles with N = 1 versus placement number n and
exponent c.

b(c,1,n) c=1.24 c=1.32 c=1.40 c=1.48
n=10 0.6024 0.4314 0.3291 0.2613
n=100 0.4602 0.3209 0.2379 0.1831
n=1,000 0.4200 0.2881 0.2096 0.1579
n=10,000 0.4055 0.2754 0.1979 0.1469
n=100,000 0.3998 0.2700 0.1926 0.1415
n=1,000,000 0.3975 0.2676 0.1900 0.1387

5. Fractal dimension

The scaling discussion of length and area in
[Man77] leads to the relationships D = 2/c for the 2D
case and D = 3/c for the 3D case. This 2D result can
also be shown to follow from equations in [DHA08].
Their prescription for the 2D involves making a
sorted list of all the radii (or another linear dimension)
of the given shape, i.e., pairs (r1,1), (r2, 2), …, (ri, i),
where the second (integer) number is the sequential
order of the shape by size. One then makes a log-log
plot of i versus ri and the best-fit slope of this plot is
an estimate of their (1−α) parameter. Because the
sequence of areas or radii in a statistical geometry
fractalization is an exact power law in this case the
best-fit line will pass exactly through each point and
will have slope −2/c. By parallel reasoning one finds
D = 1/c for the 1D case. Because the area and length
sequences have no randomness, these are exact
results. Thus it is possible to specify the fractal
dimension a priori over a substantial range. Box
counting estimates of D performed numerically on the
images have confirmed these relationships. The
fractal dimension is unaffected by the randomness of
the placement process.

6. Mixed shapes

The definition of the algorithm in section 2

depends only upon the area of the shape. This would
suggest one could use a mixture of shapes as long as
the area relationship is maintained.

Figure 7 is an example of two shapes, circles and
squares, with the shape alternating after each
placement. It can be seen that there is strong
clustering (correlation) in the placed positions, with
squares mostly near other squares and circles near
circles. Penetration of circles into mostly-square
regions and vice versa occurs at all length scales. This
cluster correlation becomes more pronounced with
larger c values.

The type of correlation or "segregation"
demonstrated here has been found in most of the
multi-shape fractalizations that have been studied to
date.

Figure 7: Mixture of circles and squares. The
parameters are: 2500 shapes, c = 1.35, N = 8, fill =
87%. Inclusive boundary conditions.

7. Irregular shapes and boundaries

To further explore the algorithm with irregular
shapes, a fractal was constructed using an irregular
shape (blob) that changes randomly with every trial; it
is defined in polar coordinates by

 r(θ) = R 1+δ cos(jθ +ϕ j)
j=2

4

∑
"

#
$$

%

&
''

(
)
*

+*

,
-
*

.*
 (9)

Here the ϕ j are phase angles that are each varied
randomly over the range 0 to 2π. The area of such a
shape is conveniently independent of the phase
angles. The area is determined by the parameter R and
the "non-circularity" is controlled by the parameter δ.
No two shapes are ever the same and there are five
degrees of freedom. See figure 8 for an example of
filling space with this type of shape.

The authors conclude that similarity of shapes in
the sense of this word in geometry is not a

requirement for the algorithm.

Figure 9 shows a filling with a highly convex and
“sharp” shapes. The value of c is close to the
maximum for this particular shape. This is a further
example [SB12] of an extreme shape, all of which
have been experimentally demonstrated to being able
to be fractalized.

Figure 8: Irregular "blob" shapes fractalized. The
parameters are: 400 shapes, c = 1.32, N = 1, δ =
0.12, fill = 88%. Periodic boundary conditions.

Figure 9: Extremely concave shapes. 5000 shapes, c
= 1.16, N = 2, fill = 73%. Inclusive boundary
conditions.

In addition, the description of the algorithm is not
restricted to filling only rectangular bounded regions.
All that is required is the calculation of the area of the
region to be filled and an intersection test between the
filling shapes and the boundary. The example in
figure 10 shows, in 2 dimensions, randomly orientated
squares filling an annulus. Figure 11 is an example of

a polygonal boundary shape with sharp pointed
features and additionally filled with “sharp” triangular
shapes. Figure 12 is a further example, this time in 3
dimensions showing cubes filling a sphere. In these
last three examples there is no opportunity to have
periodic boundary conditions, at least not in the sense
of a regular rectangular tiling.

Figure 10. Non-rectangular boundaries, in this case
an annulus. 4000 square shapes, c = 1.2, N = 3, fill =
80%. Inclusive boundary conditions.

Figure 11. Non-regular arbitrary polygonal
boundaries, in this case a star figure filled with 4000
triangles. c = 1.1, N = 1, fill = 72%. Inclusive
boundary conditions.

8. Discussion and conclusions

The results presented here are based upon
experience, relationships and patterns arising from
numerous computer experiments. The authors do not
give proofs of results such as "any shape can be
fractalized into any region" because such proofs are

currently lacking. It is hoped that proofs will be found
for some of the claims and observations made here
when this algorithm becomes more widely known to
the research community. Until that time our results
must be viewed as conjectures from the viewpoint of
pure mathematics.

The halting problem may be the most interesting
mathematical aspect of the work. The evidence for
non-halting is of two kinds: actual run-time data
(section 3) and a mathematical demonstration that the
relative amount of space available for placement
remains nearly constant as the algorithm progresses
(section 4).

The basis for the claim that the algorithm can
fractalize any shape up to a limiting c value is that the
authors have examined a large number of shapes
(including sparse and non-compact shapes) [SB12] in
one, two, and three dimensions. While there was the
expectation to find some that cannot be fractalized,
thus far none have been found. A formal proof or
disproof of this claimed property would be interesting
and challenging.

Based on the experimental evidence, the main
claims are:

1. The algorithm is space-filling if it does not halt.

2. The algorithm does not halt within a wide range
of c and N values.

3. The algorithm works with any shape sequence
obeying the area relation in equation 1.

4. Any bounded area can be filled for some range
of c and N.

Such fractals exist whether one constructs them or
not. They can be viewed as another way of
representing space, namely a random fractal
representation.

Suppose the algorithm is set up for an area of, say,
1m2, and tiles are made of the first n shapes. A tile-
setter could then mark off a circle or square of area
1m2 and be assured that he could place the tiles within
it anywhere he wished and they would always fit
provided only that he always proceeds in order of size
beginning with the largest tile.

Random fractals found in nature [Buc00] [Bal04]
can be difficult for non-specialists to grasp. Such
important properties as statistical self-similarity and
"scale-free" are not easily understood. Images of these
fractals provide "pure" examples of such behavior and
can be useful in conveying the nature of random
fractals to non-specialists.

The fractals described here differ substantially
from traditional packing algorithms that have been the
subject of a number of interesting papers [DW02]
[DW03] [DHA08]. Here the shapes are non-touching
and the gasket is a continuous whole, unlike usual
packing methodologies. The fractal dimension D can
be specified ab initio, rather than being numerically
computed. Seeding and other initial conditions are not

required.

A large number of high-resolution color fractal
images can be seen at the authors' web sites [SB12].
An earlier less-complete account of this work by
Shier can be found in the conference proceedings of
ISAMA 11 [Shi11].

Figure 12. Non-rectangular boundaries in 3
dimensions, cubes contained within a sphere. A cut-
away section shows the interior structure. 1000 cubes,
c = 1.1, N = 1, fill = 55%. Inclusive boundary
conditions.

Acknowledgements

The work was supported by iVEC through the use
of advanced computing resources located at
iVEC@UWA.

References

[AS64] ABRAMOWITZ, M and STEGUN, I.A.,

Handbook of Mathematical Functions, (1964)
Dover Publications, New York. ISBN 0-486-
61272-4.

[Bal04] BALL, P.: Critical Mass - How One Thing
Leads to Another. Farrar, Straus, and Giroux, New
York, 2004.

[BS13] BOURKE, P., SHIER, J.: Space Filling: A
new algorithm for procedural creation of game
assets. Proceedings of the 5th Annual
International Conference on Computer Games
Multimedia & Allied Technology (CGAT 2013).
[In Press].

[Buc00] BUCHANAN, M.: Ubiquity. Three Rivers
Press, New York, 2000.

[DHA08] DELANEY, G. W., HUTZLER, S., ASTE,
T.: Relation Between Grain Shape and Fractal
Properties in Random Apollonian Packing with
Grain Rotation. Phys. Rev. Letters, 101, 120602,
2008.

[DW02] DODDS, P. S., WEITZ, J. S.: Packing-
limited growth. Phys. Rev. E, 65, 056108-1, 2002.

[DW03] DODDS, P. S., WEITZ, J. S.: Packing-
limited growth of irregular objects. Phys. Rev. E,
67, 016117-1 2003.

[KS43] KASNER, E. and SUPNICK, F. On
Apollonian Packing of Circles. Proc. Natl. Acad.
Sci. USA 29, 378-384, 1943.

[Man77] MANDELBROT, B.: Fractals; Form,
Chance, and Dimension. W. H. Freeman and
Company, San Francisco, 1977.

[SB12] SHIER, J. BOURKE, P.: The authors' web
sites http://john-art.com (JS) and
http://paulbourke.net/randomtile (PB).

[Shi11] SHIER J.: Proceedings of ISAMA 11, June
13-17, 2011. Hyperseeing, Summer, pp. 13140
(2011).

[Sod36] SODDY, F. The Kiss Precise. Nature 137, pp
1021, 1936.

