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Abstract 
Computational experiments with a simple algorithm show that it is possible to fill any spatial 
region with a random fractalization of any shape, with a continuous range of pre-specified fractal 
dimensions D. The algorithm is presented here in 1, 2, or 3 physical dimensions. The size power-
law exponent c or the fractal dimension D can be specified ab initio over a substantial range. The 
method creates an infinite set of shapes whose areas (lengths, volumes) obey a power law and sum 
to the area (length, volume) to be filled. The algorithm begins by randomly placing the largest 
shape and continues using random search to place each smaller shape where it does not overlap or 
touch any previously placed shape. The resulting gasket is a single connected object. 

Categories and Subject Descriptors (according to ACM CCS):G.3 [Mathematics of Computing]: 
Probability and Statistics--Stochastic processes, I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling--Geometric algorithms, languages, and systems, I.3.m [Computer 
Graphics]: Miscellaneous 

 
1. Introduction 
 

There has long been interest in systematic ways of 
filling space with distinct shapes. Two-dimensional 
tilings in which space is filled by repetition of the 
same shape have been known since antiquity and are 
widely used in decorative art. The checkerboard is 
perhaps the simplest example of such a tiling. 

In the early 20th century recursive fractal methods 
for filling 2D space with an infinite number of shapes 
were discovered. One of the best known is the triangle 
construction of Sierpinski [Man77]. Sierpinski started 
with a filled triangle and successively removed 
smaller triangles. His construction can be space filling 
if the opposite procedure is followed where one 
begins with an empty triangle and recursively adds 
ever-smaller triangles. Thus 2D space is filled in the 
limit with an infinite number of ever-smaller similar 
triangles. Such recursive fractals have a single 
specific fractal dimension D (D = log(3)/log(2) for 
Sierpinski triangles). Fractal studies in physics 
[DW02] [DW03] [DHA08] generally proceed by 
adding shapes to an empty region, while 
mathematicians prefer the opposite procedure where a 
filled region is emptied by successive deletions 
("tremas" in Mandelbrot's usage). Where it makes a 
difference we have followed the physics usage. 

Following the publication of Mandelbrot's book 
[Man77] fractals have been found to be useful models 
in physics, geology, economics, and many other areas 
[Buc00] [Bal04]. Such fractals characteristically deal 
with random events whose statistical distributions 
follow a power law. The distribution of earthquake 
magnitudes [Buc00] is one of the most well known 

examples. Physicists have used fractal ideas to model 
and study the random packing of various shapes, with 
the goal of understanding how fractured materials 
behave [DW02] [DW03] [DHA08]. Such packing 
studies generally impose the condition that the shapes 
have mutual contact (kissing) points, and the random 
patterns that appear are found by computer 
simulation. 

 
Figure 1: Toroidal rings fractalized within a cube. 
The ring cross sectional radius is 15% of the radius 
from the center of the hole to the center of the ring. 
The parameters are: 1000 shapes, c = 1.1, N = 2 with 
a 68% fill. Inclusive boundary conditions. 



The space filling algorithm described here differs 
from the usual packing algorithms [DW02] [DW03] 
[DHA08] in that the shapes have no contact points 
[Sod36] [KS43], and the fractal dimension D rather 
than being determined from simulated data can be 
specified at the outset over a substantial and 
continuous range of values. A common class of 
packing algorithms randomly sample the area for an 
available location for the next shape and then grow a 
placed object until it touches a neighbor. The 
algorithm presented here does not involve growing 
shapes to fill voids but rather the size of the next 
shape is entirely predetermined. The algorithm will be 
described in detail in section 2 of this paper. 

 

 
Figure 2: A two-dimensional fractal based upon an 
annular ring shape. The inner circle is 2/3 the radius 
of the outer circle. The parameters are: 2000 shapes, 
c = 1.2, N = 2 with a 78% fill. Inclusive boundary 
conditions. 
 

In determining the behavior and features of the 
algorithm the authors have proceeded using the 
inductive method commonly applied in physics. By 
carrying out computational experiments, simulations 
if you will, the authors have reached conclusions 
based on consistent patterns seen in the results of 
thousands of computer runs. Thus the paper does not 
offer any formal proofs. From the viewpoint of pure 
mathematics all of the mathematical claims made here 
can be thought of as conjectures. The terminology for 
fractals used in the paper generally follows 
Mandelbrot [Man77].  

What uses can be found for this algorithm? The 
paper [BS13] by the authors describes how it might be 
used to create procedural textures in computer games 
and graphics in general. The web sites [SB12] contain 
many examples of the 2D algorithm used as art, in 
which it can be seen that the algorithm can produce a 
rich variety of engaging imagery. The many real-
world fractal distributions described in [Buc00] 
[Bal04] largely lack physical or geometric models. It 
is anticipated that the algorithm described, should it 

become widely known, may allow geometric 
modeling of some of the random phenomena found in 
various fields. Several natural objects have a visual 
appearance similar to the images generated here; these 
include but are not limited to bubbles on the surface 
of liquids, pore spaces in breads, and certain 
geological structures. 

Figure 1 is an example of applying the algorithm 
in three dimensions, filling a cubic region using 
toroidal rings. There are in total five degrees of 
freedom in the placement of each ring, position (x,y,z) 
and two orientation angles. It can be seen that this 
fractal has random topology; note for example how 
some of the rings are chain-linked to others. 

 

 
Figure 3: A one-dimensional fractal. The upper 
image shows the complete fractal with periodic 
boundary conditions. The subsequent images are 
zoomed into the central 5% of the previous image 
with obvious self-similarity. The parameters are: 
30,000 shapes, c = 1.4, N = 1 with a 99.98% fill. 
 

Figure 2 presents a two dimensional case where a 
square bounded region is filled with annular rings. 
With hollow shapes such as these it can be seen that 
the smaller shapes may end up being placed either 
inside or outside of previously placed shapes. There is 
strong correlation in the form of "nesting". 

Figure 3 is an example in one dimension. The one-
dimensional case is particularly simple and there are a 
limited number of possible shapes. Very large 
percentage fills can be achieved and the self-similar 
nature at each level of zoom is evident. Here the line 
segments of length Li are represented as circles of 
diameter Li to improve the visualization.  

 
2. The statistical geometry algorithm 
 

In the following description of the algorithm we 
will consider the two-dimensional case. Let A be the 
total area to be filled. We define a sequence of areas 
Ai (i = 0, 1, …) given by the rule 
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This is known to converge for c >1 and N > 0. 

In view of equation 2 one can write 
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such that the sum of all areas Ai is the total area A to 
be filled, that is, if the algorithm does not halt then it 
is space-filling. The parameters c and N can be chosen 
over a substantial range of values. Parameter N need 
not be an integer in the formulation above, but integer 
values are used in the examples and discussion 
presented. The general influence of parameters c and 
N can be illustrated in figure 4. For higher values of c 
the initial shapes have a larger area but as i increases 
the area falls off more quickly. Similarly for smaller 
N the initial shapes are larger but fall off more quickly 
as i increases. 

The algorithm as implemented by a computer 
simulation can be described as follows. 

Step 1. Let i = 0. Place a shape with area A0 at a 
random position within the area A of the region to be 
filled such that it does not overlap the boundary. (See 
later where this is relaxed in the case of periodic 
boundary conditions). Place the position and 
dimensions of the shape in the placed-shapes 
database. Increment i. This is referred to as the initial 
placement. 

Step 2. (iteractive). Choose a random candidate 
position for a new shape with area Ai, again, entirely 
within the boundary of the region to be filled. This is 
a trial. Test whether shape Ai overlaps any previously 
placed shape? If it does then repeat step 2. If not then 
place the position and dimensions of the shape in the 
placed-shapes database, increment i, and repeat step 
2. This is referred to as a placement. Stop when a 
desired number n of placed shapes has been reached 
or a chosen percentage fill has been achieved. 

The result is a random fractal space-filling 
collection of shapes within a fixed boundary whose 
areas follow a power-law sequence. 

Only step 2 is iterative. This is a very simple 
process. The two parameters c and N allow the 
statistical and visual properties to be varied. The 
algorithm is not dependent on the exact shape; 
experimental evidence to date indicates that the 
algorithm works (within some range of c values) for 
any shape. Implementing this space-filling algorithm 
for any particular shape requires three things:  

(1) A relationship between the linear dimensions 
(scale) and the area of the shape. 

(2) An intersection test between two shapes, that is, 
"Does shape 1 in the current proposed position, scale, 

and orientation intersect with shape 2 at its existing 
position, scale, and orientation?" 

(3) An intersection test of a shape at a particular 
position, scale, and orientation with the boundary of 
the region being filled. 

The position probability distribution for trials in 
the algorithm as presented is taken to be uniform, that 
is, every position is equally probable. This is not a 
requirement but whatever distribution is used it must 
obviously span the entire area, a uniform distribution 
is chosen here as an unbiased sampling. 

It is believed that the algorithm can be used with 
any shape or combination of multiple shapes having 
the area sequence defined in equation 1. Geometric 
similarity of the shapes is not a requirement. Shapes 
studied in 2D include circles, squares, squares with 
random rotation, rectangles with various aspect ratios, 
mixed squares and circles, annular rings, blobs, 
eights, ells, triangles, arrows, lenses, crescents, stars, 
gears, diamonds, bicircles, quadcircles, and 
quadsquares. 3D shapes tested include spheres, cubes, 
tetrahedra, octahedra, and torii. These and other 
examples can be found at the authors' web sites 
[SB12]. 

The algorithm description and equations 1 to 3 
refer to areas since the algorithm has been introduced 
in two dimensions. In one dimension the formulation 
can be reduced to line segments (lengths) and in three 
dimensions it can be extended to volumes. As such it 
can also be extended into higher dimensions and to 
the corresponding hyper-volumes. 

 

 
Figure 4. The effect of different values of c and N on 
the function for the area on the i’th iteration from 
equation 1. 

 
The algorithm was introduced for shapes not 

crossing the boundary of A (referred to here as an 
inclusive boundary). It works equally well with a 
periodic rectangular boundary of lengths Lx and Ly. In 
this case the intersection test for placement needs to 
consider the object also appearing at positions x ± Lx 
and y ± Ly. When a new shape placement is accepted 
and if it crosses any boundary then the same shape is 



placed in the database at x ± Lx and/or y ± Ly to ensure 
periodicity. See figure 8 as an example of periodic 
boundary conditions, in these cases the image can be 
seamlessly tiled. 

The c parameter relates directly to fractal 
dimension D (section 5). The larger the value of c is, 
the more rapidly the sizes of the shapes diminish as 
more shapes are placed. There is a largest c value that 
varies depending on the shape in question and the 
region being filled (section 3). The number of trials 
required depends very strongly on c, see figure 5. The 
N parameter can be used to adjust the size of the 
largest shape. When N is large, the first few shapes 
are smaller than with a low N value, and their areas 
fall off more slowly with the number of placements. 
The fractal dimension D is independent of the value 
of N. 

The concept of a maximum c value is developed 
more fully in section 3 of the paper.  The minimum c 
value only has the requirement that c be > 1. Compact 
and convex shapes such as circles or squares 
generally have higher maximum c values than 
concave or convoluted shapes. Of the 2D shapes 
studied, squares have the highest maximum c value. 
Squares require fewer trials per placement than any 
other shape studied in 2D. The highest c value in 1D 
is about 2.7 (with N = 1); for 2D it is about 1.57 
(squares), and for 3D it is about 1.2 (cubes). The 
dividing line between c values where fractalization is 
possible or not is not a sharp one since it can depend 
on the position of the first random placement, see 
later. 

If the random numbers and length parameters used 
in the algorithm are thought of as having infinite 
precision the probability of two shapes actually 
touching is vanishingly small. The placement of a 
given shape is random, but this is a highly constrained 
randomness, influenced by all of the previous 
placements. At any given step placement is dependent 
on the entire prior history of the process. 

 
3. Does the algorithm halt? 
 

We say that the algorithm has halted when it 
arrives at a state where there is no place in the gasket 
large enough to accommodate the next-to-be-placed 
shape. We present evidence that within a range of c 
values > 1 and below some limiting value the 
algorithm runs without halting. This evidence is based 
upon large numbers of computer experiments often 
designed explicitly to find halting examples. 

It can be seen in figure 5 that the trials data follow 
a reasonably straight line in log-log coordinates as the 
cumulative number of trials becomes large, indicating 
that the cumulative number of trials obeys an 
approximate power law versus n. The data has less 
scatter for low values of c, and increasing scatter for 
higher values of c. Such an approximate power law 
was seen for all cases studied. This indicates that any 
number of shapes can be placed with a finite (but 
possibly large) number of trials for the c and N values 

shown in figure 5 and that the algorithm does not halt 
simply because n becomes large. It is evident from 
figure 5 that as n increases (area of remaining gasket 
decreases) the number of trials needed to place a 
shape can become extremely large. Thus the 
algorithm becomes increasingly inefficient and this is 
especially so for large c values. The amount of noise 
and fluctuation in the process is also greater for large 
c values (upper curves).  

 
Figure 5: Log-log plots for the cumulative number nt 
of trials (vertical) versus the number n of placed 
shapes (horizontal) for squares and circles. For the 
circles the c values are (from the bottom): 1.20, 1.25, 
1.30, 1.35, 1.40. For the squares the c values are 
(from the bottom): 1.20, 1.25, 1.30, 1.35, 1.40, 1.45. 
Data from five runs is shown for each c value. In all 
cases N = 1. 
 

If we undertake regression of the data of figure 5 
to estimate the exponent in the underlying power law, 
the exponent for the smooth data at large n values is 
found to be approximately equal to c.  

It is usual in programming random searches to 
place an upper limit on the number of trials, stopping 
the algorithm when this is exceeded. A failure of this 
kind is not halting in the sense defined above. For 
many of the examples presented here the value of n 
has been chosen relatively low to improve the 
appearance of the figure given the limited resolution 
available. 

The algorithm does halt for large c values. One 
cause of this is the geometry of the first few shapes. 
Consider the case of squares fractalized within a 
square. The best case for placement of the first two 
squares is one where the first square abuts one corner 
of the bounding square and the second abuts the 
diagonally opposite corner. This state leaves the 
greatest amount of room for subsequent squares. If the 
widths of the first squares are w0 and w1 respectively 
it is evident that if w0 + w1 exceeds the width of the 
bounding square it is not possible to place both square 
0 and square 1 by random search and the algorithm 
halts. Calculations show that when N = 1 this occurs 
for c = 1.5224, which is thus a hard upper limit on 
usable c values for squares. When high values of c are 



tried with N = 1 it is found that as one approaches c = 
1.50 from below the number of runs which halt 
increases rapidly. Most observed halting events of this 
kind have been found in the first ~100 placements.  

Changes in the value of N has only a modest effect 
on the maximum allowed value of c, with larger N 
values leading to somewhat increased maximum c 
values.  In practice the algorithm has been observed to 
run without halting for any c value greater than 1 and 
less than the maximum c. 

If N > 1 the requirements imposed by the 
geometry of the first few shapes are more relaxed 
since the first few shapes are nearly the same size or 
smaller. For larger N values it has been found possible 
to make successful computer runs for squares with c 
values up to ~1.57.  

For the example of squares where N = 1, and c ≤ 
1.45, as in the data of figure 5, halting has not been 
observed to date in hundreds of runs. For these 
parameters the evidence is that the algorithm does not 
halt. While formal proofs are lacking, the algorithm 
runs without stopping in practice and applications in 
games, visual art, and modeling are also not subject to 
halting problems. The largest usable c value depends 
on the shape fractalized, and is in general highest for 
simple shapes (for example, circles and squares) and 
lowest for concave and convoluted shapes. 

It is difficult to make meaningful comparisons 
between the 1D, 2D, and 3D cases because, for 
example, a circle is not a sphere, and the maximum c 
values do depend on the dimension. Several trends 
can however be observed. If 2D and 3D cases are run 
near their maximum c values, it generally requires far 
more trials to reach a given percentage fill for 3D. 
The same holds for 1D and 2D cases; the 2D case 
requires more trials. 

The evidence from experience running the 
algorithm with a wide variety of c, N, and shapes is 
that there is a wide range of c values from 1 up to 
some critical value where halting is never observed. 
Proof of this would be interesting, but at the present 
time it must be a conjecture supported by data. In 
order to put this on a quantitative basis a large number 
of runs were made for circles fractalized in a square 
(N = 1) with various c values and the number of 
halting events was determined, see figure 6. 

The open circles show data from 2000 circle runs 
for each point, with inclusive boundaries.  There were 
no halting events at all for the point with lowest c. 
The squares show similar data from 3000 circle runs 
with periodic boundaries. For inclusive boundaries a 
run was taken to be non-halting if it did not halt in 
8,000,000 trials at any placement. For periodic 
boundaries the run was taken to be non-halting if it 
did not halt in 6,000,000 trials. Most halting events 
occurred by the first 50 placements. 

These results can be summarized as "The 
algorithm never halts for sufficiently low c and 
always halts for sufficiently high values of c". The 

halting probability traces out a smooth curve between 
the non-halting and the halting regions. 

 
Figure 6. Halting probability as a function of c for 
circles fractalized in a square with inclusive and 
periodic boundaries. 

 
The argument about fitting of the first two shapes 

made above for squares becomes much more 
complicated when we consider periodic boundaries.  
Here each shape which overlaps the boundary has one 
or more "partners" located at x ± Lx and/or y ± Ly, 
where Lx and Ly are the dimensions of the bounding 
rectangle. The fact that runs with periodic boundaries 
do not halt over a wider c range suggests that the 
fitting of the first few shapes is less constrained with 
periodic boundaries. 

Why is the maximum c lower for a less compact 
shape? Consider a shape that is a square frame of side 
length u, with a square of side length du cut out of its 
middle (i.e., it is a hollow shape). Assume this shape 
is fractalized (inclusive boundaries) in a square of 
side length s. Consider the first three iterations 
resulting in a placement of shape number 0, 1 and 2. 
The side lengths s0 and s1 of the first two shapes will 
be larger than for a solid square of the same area, and 
it is found when d = 2/3 that s0 + s1 > s when c = 
1.2313. However, at this c value it is possible for 
shape 1 to fit inside of shape 0 (possible but 
improbable in a random search).  When c reaches 
1.2936 we find so that s0 + s2 > s so that shapes 0 and 
2 no longer fit and all runs will halt for c > 1.2936. 
This is much lower than the corresponding value c = 
1.5224 for a compact non-hollow square, and shows 
by example how a less compact shape lowers the 
maximum c value. 

 
4. The average gasket width 
 

Is there always a large enough space in the gasket 
to place more shapes? It is interesting to track the 
average gasket width versus the linear dimension(s) of 
the shapes being placed. Let Ag(n) be the total gasket 
area after the nth placement, and Pg(n) be the total 
gasket perimeter after the nth placement. The gasket 
has a quite irregular shape, so the following definition 
of the average gasket width has been assumed (in 
2D): 
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This quantity has the units of length and can be 
computed for any shape. In what follows we will 
assume circles. If we divide g by the diameter of the 
next-to-be-placed circle we have a dimensionless 
average gasket width b(c,N,n). This is a measure of 
the relative amount of space available for the next 
circle and is given by 
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where rn+1 is the radius of circle n+1. This is a 
dimensionless non-random quantity that is invariant 
with respect to the particular random placements 
used. For circles the area and radius of the ith circle 
are 
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This quantity can be readily computed and the 
results for the case of a circle are given in table 1 (for 
N = 1) along with the average number of trials per 
placement. 

It is seen that b(c,1,n) appears to go to a finite 
limit as n → ∞, and that b(c,1,n) changes very little 
with n for large values of n, although it does show a 
strong variation with c. Since b(c,1,n) is a measure of 
the relative space available for placement of the next 
circle, the interpretation of these results is that there is 
a "just in time" relationship such that the space 
available for placement falls in direct proportion to 
the size of the circle to be placed. This helps to 
explain why the algorithm does not halt. Computer 
runs placing a million circles have been performed 
with no sign of halting. 

The variation of b(c,1,n) with c shows that c 
controls the average spacing between shapes. With 
low c the average spacing between shapes is relatively 
large, while for high c values the spacing can become 
quite small. It is also seen that the patterns are more 
ordered (less random) for large c values than for small 
c values. 

The dimensionless gasket width b(c,N,n) provides 
an average measure of the amount of "wiggle room" 
available at placement for a given c, N, and n.  It can 
be seen that b drops rapidly as c increases for all n 
values, indicating that as c rises there are fewer places 

that can accommodate random placement of the next 
circle.  This dependence shows itself in the steep 
increase in the number of trials needed for a 
placement as c increases and the steadily tighter 
fitting of the shapes.  As n increases b decreases, but 
at a steadily smaller rate.  For the highest n values in 
table 1 the drop is very small.  For example when c = 
1.32, b only drops by 0.9 percent as n goes from 
100,000 to 1,000,000.  This shows that for large 
values of n the available space for the next placement 
is falling at about the same rate as the diameter of the 
next circle, which helps to explain the observation 
that the algorithm does not halt. 

The much steeper drop of b as n increases during 
the first 100 placements supports the observation that 
when a run halts it does so during the early 
placements. 

It is not possible to determine if b goes to a finite 
limit when n → ∞ from the numerical data in table 1, 
although b changes very slowly when n is large.   
 
Table 1. Values of the dimensionless gasket width for 
circles with N = 1 versus placement number n and 
exponent c. 

b(c,1,n) c=1.24 c=1.32 c=1.40 c=1.48 
n=10 0.6024 0.4314 0.3291 0.2613 
n=100 0.4602 0.3209 0.2379 0.1831 
n=1,000 0.4200 0.2881 0.2096 0.1579 
n=10,000 0.4055 0.2754 0.1979 0.1469 
n=100,000 0.3998 0.2700 0.1926 0.1415 
n=1,000,000 0.3975 0.2676 0.1900 0.1387 

 
5. Fractal dimension 
 

The scaling discussion of length and area in 
[Man77] leads to the relationships D = 2/c for the 2D 
case and D = 3/c for the 3D case. This 2D result can 
also be shown to follow from equations in [DHA08]. 
Their prescription for the 2D involves making a 
sorted list of all the radii (or another linear dimension) 
of the given shape, i.e., pairs (r1,1), (r2, 2), …, (ri, i), 
where the second (integer) number is the sequential 
order of the shape by size.  One then makes a log-log 
plot of i versus ri and the best-fit slope of this plot is 
an estimate of their (1−α) parameter. Because the 
sequence of areas or radii in a statistical geometry 
fractalization is an exact power law in this case the 
best-fit line will pass exactly through each point and 
will have slope −2/c. By parallel reasoning one finds 
D = 1/c for the 1D case. Because the area and length 
sequences have no randomness, these are exact 
results. Thus it is possible to specify the fractal 
dimension a priori over a substantial range. Box 
counting estimates of D performed numerically on the 
images have confirmed these relationships. The 
fractal dimension is unaffected by the randomness of 
the placement process. 

 
6. Mixed shapes 
 

The definition of the algorithm in section 2 



depends only upon the area of the shape. This would 
suggest one could use a mixture of shapes as long as 
the area relationship is maintained. 

Figure 7 is an example of two shapes, circles and 
squares, with the shape alternating after each 
placement. It can be seen that there is strong 
clustering (correlation) in the placed positions, with 
squares mostly near other squares and circles near 
circles. Penetration of circles into mostly-square 
regions and vice versa occurs at all length scales. This 
cluster correlation becomes more pronounced with 
larger c values. 

The type of correlation or "segregation" 
demonstrated here has been found in most of the 
multi-shape fractalizations that have been studied to 
date.  

 

 
Figure 7: Mixture of circles and squares. The 
parameters are: 2500 shapes, c = 1.35, N = 8, fill = 
87%. Inclusive boundary conditions. 
 
7. Irregular shapes and boundaries 
 

To further explore the algorithm with irregular 
shapes, a fractal was constructed using an irregular 
shape (blob) that changes randomly with every trial; it 
is defined in polar coordinates by 

 r(θ ) = R 1+δ cos( jθ +ϕ j )
j=2
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Here the ϕ j are phase angles that are each varied 
randomly over the range 0 to 2π. The area of such a 
shape is conveniently independent of the phase 
angles. The area is determined by the parameter R and 
the "non-circularity" is controlled by the parameter δ. 
No two shapes are ever the same and there are five 
degrees of freedom. See figure 8 for an example of 
filling space with this type of shape. 

The authors conclude that similarity of shapes in 
the sense of this word in geometry is not a 

requirement for the algorithm. 

Figure 9 shows a filling with a highly convex and 
“sharp” shapes. The value of c is close to the 
maximum for this particular shape. This is a further 
example [SB12] of an extreme shape, all of which 
have been experimentally demonstrated to being able 
to be fractalized. 

 

 
Figure 8: Irregular "blob" shapes fractalized. The 
parameters are: 400 shapes, c = 1.32, N = 1, δ  =  
0.12, fill = 88%. Periodic boundary conditions. 

 

 
Figure 9: Extremely concave shapes. 5000 shapes, c 
= 1.16, N = 2, fill = 73%. Inclusive boundary 
conditions. 
 

In addition, the description of the algorithm is not 
restricted to filling only rectangular bounded regions. 
All that is required is the calculation of the area of the 
region to be filled and an intersection test between the 
filling shapes and the boundary. The example in 
figure 10 shows, in 2 dimensions, randomly orientated 
squares filling an annulus. Figure 11 is an example of 



a polygonal boundary shape with sharp pointed 
features and additionally filled with “sharp” triangular 
shapes. Figure 12 is a further example, this time in 3 
dimensions showing cubes filling a sphere. In these 
last three examples there is no opportunity to have 
periodic boundary conditions, at least not in the sense 
of a regular rectangular tiling. 

 

 
Figure 10. Non-rectangular boundaries, in this case 
an annulus. 4000 square shapes, c = 1.2, N = 3, fill = 
80%. Inclusive boundary conditions. 
 

 
Figure 11. Non-regular arbitrary polygonal 
boundaries, in this case a star figure filled with 4000 
triangles. c = 1.1, N = 1, fill = 72%. Inclusive 
boundary conditions. 

 
8. Discussion and conclusions 
 

The results presented here are based upon 
experience, relationships and patterns arising from 
numerous computer experiments. The authors do not 
give proofs of results such as "any shape can be 
fractalized into any region" because such proofs are 

currently lacking. It is hoped that proofs will be found 
for some of the claims and observations made here 
when this algorithm becomes more widely known to 
the research community. Until that time our results 
must be viewed as conjectures from the viewpoint of 
pure mathematics. 

The halting problem may be the most interesting 
mathematical aspect of the work. The evidence for 
non-halting is of two kinds: actual run-time data 
(section 3) and a mathematical demonstration that the 
relative amount of space available for placement 
remains nearly constant as the algorithm progresses 
(section 4). 

The basis for the claim that the algorithm can 
fractalize any shape up to a limiting c value is that the 
authors have examined a large number of shapes 
(including sparse and non-compact shapes) [SB12] in 
one, two, and three dimensions. While there was the 
expectation to find some that cannot be fractalized, 
thus far none have been found. A formal proof or 
disproof of this claimed property would be interesting 
and challenging. 

Based on the experimental evidence, the main 
claims are:  

1. The algorithm is space-filling if it does not halt. 

2. The algorithm does not halt within a wide range 
of c and N values. 

3. The algorithm works with any shape sequence 
obeying the area relation in equation 1.  

4. Any bounded area can be filled for some range 
of c and N. 

Such fractals exist whether one constructs them or 
not. They can be viewed as another way of 
representing space, namely a random fractal 
representation. 

Suppose the algorithm is set up for an area of, say, 
1m2, and tiles are made of the first n shapes. A tile-
setter could then mark off a circle or square of area 
1m2 and be assured that he could place the tiles within 
it anywhere he wished and they would always fit 
provided only that he always proceeds in order of size 
beginning with the largest tile. 

Random fractals found in nature [Buc00] [Bal04] 
can be difficult for non-specialists to grasp. Such 
important properties as statistical self-similarity and 
"scale-free" are not easily understood. Images of these 
fractals provide "pure" examples of such behavior and 
can be useful in conveying the nature of random 
fractals to non-specialists. 

The fractals described here differ substantially 
from traditional packing algorithms that have been the 
subject of a number of interesting papers [DW02] 
[DW03] [DHA08]. Here the shapes are non-touching 
and the gasket is a continuous whole, unlike usual 
packing methodologies. The fractal dimension D can 
be specified ab initio, rather than being numerically 
computed. Seeding and other initial conditions are not 



required. 

A large number of high-resolution color fractal 
images can be seen at the authors' web sites [SB12]. 
An earlier less-complete account of this work by 
Shier can be found in the conference proceedings of 
ISAMA 11 [Shi11]. 

 
Figure 12. Non-rectangular boundaries in 3 
dimensions, cubes contained within a sphere. A cut-
away section shows the interior structure. 1000 cubes, 
c = 1.1, N = 1, fill = 55%. Inclusive boundary 
conditions. 
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