# Visualisation

Projects at iVEC@UWA

Paul Bourke



# Outline

- Introduction to iVEC.
- Introduction to science/data visualisation and supporting displays.
- Present various representative visualisation projects over the last 2 years.

| • | <b>Graphical representation of data</b> Project:Tornado simulation                                          |           |
|---|-------------------------------------------------------------------------------------------------------------|-----------|
| • | <b>Volume visualisation</b><br>Project: Pausiris mummy                                                      | 2011-2012 |
| • | <b>Dark (matter)</b><br>Visualisation of large scale cosmological simulations                               |           |
| • | High resolution image capture and display<br>Projects: Beacon Island - Rock Art                             |           |
| • | <b>Automatic 3D reconstruction from photographs</b><br>Projects: Rock art - Dragon Gardens - Ngintaka story | 2013      |
| • | <b>360 degree video recording in cultural heritage</b> Projects: Ngintaka story - Mah Meri rituals          |           |

## Introduction to iVEC

## http://ivec.org

- A partnership between the 5 key research organisations in Western Australia.
  - Edith Cowan University
  - Curtin University
  - Murdoch University
  - Commonwealth Scientific and Industrial Research Organisation
  - The University of Western Australia
- Facilitates research at the partners by providing advanced computing: hardware, software and expertise.
- Five programs

#### - Education

Provides year-round training modules and runs an interns program each summer.

#### - eResearch

Supporting researchers maximise the benefits of digital technology within their discipline.

#### - Industry and government uptake

Facilitate relationships between iVEC and government and industry.

#### - Supercomputing technology and applications

Collaborates with and encourages the uptake of supercomputing by researchers.

#### - Visualisation

Supports visualisation through expertise and specialist infrastructure.

### Visualisation

• Definition:

Visualisation is the process of applying advanced computing techniques to data to facilitate insight into the underlying structures, relationships and processes.

 Definition for my mother to tell her friends: "Turning data into images and animations to aid interpretation/understanding".

- Very interesting field: requires a wide range of skills
  - computer programming
  - algorithms in computer graphics
  - mathematics
  - realtime / interactive APIs and technologies
  - human / computer interfaces
  - knowledge of human perception theory
  - creativity and design

#### Outcomes

- Informing researchers.
- Conveying research outcomes to peers.
- Educational resources for University courses, the general public, and school children.
- Exhibitions in museums and art galleries.

- Research outcomes for data visualisation include
  - Uncovering something new.
  - Understanding some aspect of the data faster.
  - Finding errors.

## Visualisation @ iVEC

- Three I/2 FTE funded positions: UWA Curtin CSIRO
- Budget to support visualisation activities of researchers at any of the iVEC partners.
- Compute infrastructure dedicated or optimised for challenging visualisation projects.
- Displays to support visualisation.



Curtin & ECU











UWA

Murdoch

# Visualisation @ iVEC

- Capture infrastructure:
  - Stereo3D video camera
  - High resolution video cameras
  - Specialist camera rigs
  - Structured light camera
  - 360 video camera
- Software tools and expertise.



Stereoscopic 3D cameras



High resolution video cameras



360 degree video capture



3D scanners

### Displays

- As the name suggests, visualisation most often uses the sense of vision to convey information to the human brain.
- As such it makes sense to leverage the capabilities of the human visual system, three main areas:
  - Stereopsis: the sense of depth we perceive due to having horizontally displaced eyes.
  - Peripheral vision: the sense of "being there", of being immersed.
  - Visual fidelity: ability to resolve detail at scale.





iDome (Immersion)

Tiled display (Fidelity)

### Other senses ...

- Sonification: visualising using our sense of hearing.
- Classic examples:
  - Hospital pulse measurement: "The machine that goes PING".
  - Geiger counter.
- Two most common approaches are to map some variable to the waveforms (eg: amplitude or frequency modulation) or to map to instruments (eg: midi).
- Pure sonification can be difficult, often just sounds like noise or really bad music.
- More commonly used to accompany and reinforce the visuals.
- Good example is sonification of nuclear tests from 1945-1996 by Japanese artist Isao Hashimoto (http://www.youtube.com/watch?v=cjAqR1zICA0)
- Sonification of pulsars



Midi instrument, equal tempered scale

### Sense of touch

- Force feedback has been used for some time to allow data to be "felt", haptics.
- Commodity example is joystick vibration in car driving games.
- Used extensively in remote surgery eg: force feedback scalpel.
- More recently it has been possible to make physical models that can then be explored physically.
- Exploring data in the same way as we explore objects in real life.



Knot theory

Neuroscience

### Mapping data to graphical elements

- A large part of what occurs in visualisation is mapping variables to graphics.
- Sometimes the mappings are obvious/intuitive, other times more freedom is possible.
- Colour often used to represent scalar quantities.
- "Glyphs" is the term given to graphical elements whose characteristics reflect a number of variables. Direction, volume, strength ...



### First, a distinction between data and illustrative visualisation



# Obvious literal mappings



# Conventional (informed) mappings

Movie

H

# Being inside the data



# Visualising mathematics in vision research





### Volume visualisation



• In a volumetric dataset there is some quantity sampled on a regular 3D grid.





### Volumetric data

- Volumetric datasets have been a common data type in many areas of science for some time.
- Traditionally one thinks about medical data, for example MRI.
- Other scanning and 3D imaging technologies include CT (MicroCT) and CAT scans. There are many others.
- Volumetric data also arises from numerical simulations.
   Quite common in astronomy and engineering (finite element calculations).
- In scanned volumetric datasets the quantity per voxel depends on the scanning technology. For example: MRI essentially gives water content, CT gives density.
- For volumetric datasets derived from simulation there can be multiple variables per voxel.



Medical research (MRI)



Geology (CT)



Entomology

### Volume visualisation

- The process of exploring and revealing the structure/interior of a volumetric dataset.
- The general approach involves a mapping between voxel values and colour/opacity.
- Realtime volume visualisation generally requires hardware assistance, notable graphics cards.
- Has always been a demanding area in visualisation, the data volumes researchers wish to visualise has always been ahead of the technology.
- Still the case with huge volumes from MicroCT scanners and Synchrotrons.



## Example: Western Gorilla (Male)

![](_page_20_Picture_1.jpeg)

LoD(1): Size: 512x512x545 (4:8192x8192)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

Drishti

# Example: Rabbits liver

![](_page_21_Picture_1.jpeg)

Courtesy Ajay Limaye, ANU

![](_page_22_Picture_0.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

### Visualisation of simulation data

- Project: Dark Matter cosmological simulations
- Example of visualisation starting out as being provided only for the researchers and being repurposed for an internationally distributed planetarium production.
- Characteristics:
  - Large numbers of points, minimum 200 million, maximum 1 billion (COSMOS).
  - Generally three types of particles: Dark Matter, Stars, Gas.
  - Relative numbers of each type of particle may vary over time.
  - Each point has a region of influence, smoothing kernel.
  - Typically have multiple parameters per particle. Interest here in position, velocity (for time interpolation), mass, smoothing radius.
- Outcomes
  - Explore pipelines appropriate for these types of data.
  - High resolution and quality animations for researchers post simulation.
  - High impact images and animations for public outreach.
  - Support for multiple projection types: orthographic, perspective, fisheye, spherical.
- Data volumes such that the visualisations were also performed on the supercomputers creating the simulations.

### Not just points!

- If it were just "points" it would be much simpler.
- Region of influence are 3D functions of radius, similar to a "point spread function" in optics. Note this is used within the simulation software so not an arbitrary choice for the visualisations.
- For particles without a smoothing kernel (eg: stars) a Gaussian is used which allows the same pipeline to be employed. Use a single standard deviation, mass determines the amplitude.

![](_page_25_Figure_4.jpeg)

### Control over the time/quality trade-off

- Common requirements of very large datasets is to be able to render simply and fast, better quality as time becomes available.
- Be able to manage interactive performance as well as high quality rendered imagery.
- Implemented smoothing kernel by sampling (regular or stochastic) in 3D. Points are then
  projected onto plane, cylinder, or spherical surface. The image is then a histogram the projected
  points contribute their kernel weighted mass to.
- Advantage of being able to form image frames with speed/quality trade-off.

![](_page_26_Figure_5.jpeg)

Random sampling

![](_page_27_Figure_0.jpeg)

each timestep

M independent MPI processes each working on 1/N of the data and each generating a histogram

### Cosmos

- Simulation within a cubic region (periodic bounds) of the Universe just after the Big Bang.
- 600 million light years on each side of the cube.
- Shows dark matter collapsing over 14 billion years of cosmic time, forming filaments and collapsing haloes of the Cosmic Web.
- Note there is no smoothing kernel here, the images look smooth and continuous due to the I billion+ particles per time step.
- Even at 3Kx3K, if the whole dataset is in shot then on average there are over 100 points per pixel (if they were distributed uniformly).
- The final image is essentially a histogram formed on the projection plane.
- Original simulation computed on vayu (NCI). Used 1024 cores, 2.8TB RAM, took 19 hours (~20,000 CPU hours) Rendering performed on epic (iVEC).

![](_page_29_Picture_0.jpeg)

# KINETIC

- Simulation of the formation of a Spiral Galaxy similar to our own Milky Way but about half the current age.
- The Gas follows the Dark Matter along the filaments.
- Computed on epic machine (iVEC).
   Used 1024 cores, 2.05TB RAM, took 470 hours (~500,000 CPU hours).
   Rendering performed on epic (iVEC).

![](_page_31_Picture_0.jpeg)

### Dark

- Example of science visualisations being used in public outreach.
- http://darkthemovie.info
- DARK is a fulldome movie that explains and explores the nature of Dark Matter, the missing 80% of the mass of the Universe.

The search for Dark Matter is the most pressing astrophysical problem of our time – the solution to which will help us understand why the Universe is as it is, where it came from, and how it has evolved over billions of years – the unimaginable depths of deep time, of which a human life is but a flickering instant.

 Currently showing in 16 countries, translated into 5 languages ... and counting.

![](_page_32_Picture_6.jpeg)

![](_page_33_Picture_0.jpeg)

### High resolution image capture and display

- Imaging sensor resolution is only growing modestly.
   Current commodity SLR cameras are around the 20 to 30 MPixel range.
- Arbitrary high sensor density means the lens quality may be the final limiting factor to higher resolution.
- How does one capture imagery at higher than sensor resolution?
- Solution is to join a large number of photographs, each of a smaller area, together.
   A widely used technique from astronomy to microscopy.
- Motivations
  - Capture imagery from site where access is problematic.
  - Capture imagery of greater research value.
  - Acquire as image of the entire object as well as detail.

# Hubble ultra deep field (HUDF)

![](_page_35_Picture_1.jpeg)

- Imm x Imm @ Im
- 7000 x 7000 pixels

![](_page_35_Picture_4.jpeg)
### Optical microscopy

#### CMCA, UWA



- Rat neuron
- 11,000 x 10,000 pixels
- 4x4 tile

# Geology



#### Basic technique

- Motorised camera rigs save the time of manual shoot and move camera.
- Final resolution only limited by zoom lens field of view and camera distance.

 $13 \times 3$  grid







40,000 x 10,000 pixels



Single 20MPixel image











#### Software challenges

- Are some issues with software to view/edit these images.
- Most image file formats for example don't support more than 32,000 pixels in width or height.
- Most viewers expect all the image to be in memory, may not be possible.
- There are "large image formats" and viewers capable of pyramidal multi-resolution formats.



#### **Beacon Island**

- Site where the Batavia ship wreck survivors/victims came ashore.
- Project to record the site as it currently stands before fisherman huts are removed.
- Expect additional grave sites under the concrete slabs.









#### Automatic 3D reconstruction from photographs

- Photogrammetry: the general term give to deriving some 3D quality from a series of images.
- Traditionally used in landscape mapping, mostly 2.5 structure.
- Due to a number of recent algorithms it is being applied to the capture of full 3D objects.
- Fairly old history in Western Australia in mining and geology. For example, a cost effective way of determining volume of rock extracted in mining.
- Motivation and characteristics
  - Capturing 3D models of significant objects, richer data than just photographs.
  - Non-intrusive capture.
  - No specialist capture hardware.
  - Delivers texture and structure.
  - Fast acquisition of objects to populate virtual worlds.

### Mine pit modelling







### Rock Art: Wanmanna





### Just 3 photographs!









#### Dragon gardens

- Heritage gardens in Hong Kong.
- Built by industrialist Wing Fat.
- Popularly known as the site for the 1974 James Bond movie "The man with the Golden Gun".



Scene from the movie



Gardens today



Scene from the movie



















### Ngintaka



- Story of grinding stone stolen by Ngintaka (A lizard).
- The story of Ngintaka is told at places across the landscape.

### Grinding stone

A.





### Headdress







#### 360 degree video recording and presentation

- Motivations:
  - Record everything occurring around a central point, nothing "off camera".
  - To capture data that can presented in a way as to create the sense of "being there".
- Applications of visualisation in cultural heritage: giving an insight into what it is like in a different culture, place or time.
- Two requirements
  - To capture the underlying video asset.
  - To present in an interactive environment, preferably one that fills the viewers FOV.
- One might imagine HMD (Head Mounted Displays) to be the vehicle but they still present very much a tunnel vision experience, at least for the affordable models.
- The approach often used for this work is a hemispherical or cylindrical display.
- A hemisphere or 1/2 hemisphere still requires navigation, a full cylinder doesn't, the video happens all around the viewer.
- Two examples
  - Ngintaka indiginous story/dance
  - Mah Meri dance/ritual

#### LadyBug camera

- PtGrey has produced 360 degree x 150 degree video cameras for some time.
  Distinction with most other 360 capture devices is the resolution.
- Target security and surveillance applications.
  Operator can see a full 360 field of view in a single camera shot.
- Remote operations.
- Performance recording and analysis.
- Sports science, presenting scenarios that more fully engage the human visual field.





#### Performance - Anatomy of a spherical projection

5400 x 2700 pixels



### Cylindrical projection



Can derive cylindrical projection of any vertical field of view





### Fisheye projections (Infinite number)









### Remote operations



Movie



## Sports science


## Example: Ngintaka (Cultural heritage)

- One location for the Ngintaka story after the grind stone has been recovered is in a cave.
- The belly of Ngintaka.



## 360 x 140 degree video example



## Navigable example in the iDome



#### Mah Meri

- Tribe in West Malaysia.
- Traditional healing involves a priestess determining the form of the sickness.
- A carver fashions a mask representing that entity.
- A ritual dance is performed around the patient who wears the mask.
- The mask is then released into the river, taking the illness with it.
- As such, not many masks in existence.
- A repertoire of up to 400 illness spirits.







## Sample LadyBug footage



Movie



# Fisheye view





Movie

## Ritual area



#### Priestess building



Sure enough, came down with an as yet undiagnosed illness the next day, have only fully recovered in the last week or so.

Closing Message: Don't mess with the local spirits!

