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Calibration and three-dimensional
reconstruction with a photorealistic
simulator based on the omnidirectional
vision system
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Abstract
Recent advancements in deep learning require a large amount of the annotated training data containing various terms and
conditions of the environment. Thus, developing and testing algorithms for the navigation of mobile robots can be
expensive and time-consuming. Motivated by the aforementioned problems, this article presents a photorealistic simu-
lator for the computer vision community working with omnidirectional vision systems. Built using unity, the simulator
integrates sensors, mobile robots, and elements of the indoor environment and allows one to generate synthetic pho-
torealistic data sets with automatic ground truth annotations. With the aid of the proposed simulator, two practical
applications are studied, namely extrinsic calibration of the vision system and three-dimensional reconstruction of the
indoor environment. For the proposed calibration and reconstruction techniques, the processes themselves are simple,
robust, and accurate. Proposed methods are evaluated experimentally with data generated by the simulator. The pro-
posed simulator and supporting materials are available online: http://www.ilabit.org.
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Introduction

The indoor reconstruction is a crucial technique in com-

puter vision (CV), contributing to various applications such

as virtual and augmented reality,1,2 layout recovery,3,4 and

mobile navigation.5–7 Perception and sensing become an

important part of the reconstruction of unknown environ-

ments. In general, reconstruction methods can be based on

passive or active sensing techniques; each method has its

own relative merits.

Passive vision systems do not rely on energy being

emitted into the scene.8–13 This type of sensing technique

operates similar to human vision and the hardware
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requirements are modest (e.g. stereo vision). They do, how-

ever, suffer from particular difficulties, such as point

extraction in nontextured environments, correspondence

problem, low accuracy, and speed.14 Therefore, the recon-

struction of indoor environments with simple corridors can

be time-consuming and not as accurate as expected.

In contrast to the passive vision systems, the active

vision systems may rely on energy (e.g. structured light)

being emitted into the scene. This type of sensing technique

may overcome or alleviate problems existing in passive

vision systems. In this case, one of the cameras is replaced

by an external projecting device (e.g. laser emitter), and the

emitting light is detected by the remaining cameras.14

Important here is the calibration between the camera and

the laser source in order for the measurement result to be as

accurate as required.

Besides sensing techniques, another performance indi-

cator of the indoor reconstruction is the field of view

(FOV). Normal or even wide-angle charge-coupled device

cameras still have relatively modest FOVs, limiting the

reconstruction of the whole scene. For example, the ceiling

is not usually visible15 and yet it is an important component

of the main structure of the indoor environment. Therefore,

the aim of recent research is to improve the situation by

extending the FOV by deploying omnidirectional cameras.

In view of the aforementioned developments, this article

considers a more universal, low-cost vision system, which

improves three-dimensional (3D) reconstruction results for

a wide range of indoor scenarios.

In the article,16 it was shown how useful a simulation

environment can be for comparative analysis between

methods. In this article, we also take advantage of it when

comparing 3D reconstruction methods. Additionally, in this

article, we decided to go further and ensure open access to

our simulator so as to provide the opportunity for other

scholars to test their theories and conduct experiments with

omnidirectional vision systems. Our simulator runs on

Windows, macOS, and Linux.

The contributions of our work are three-fold: (1) A cus-

tomizable photorealistic simulator for the CV community

working with omnidirectional vision systems with the

structured light in indoor scenarios. As a consequence, two

practical applications are studied within the proposed simu-

lation environment: (2) An improved extrinsic calibration

of an omnidirectional camera and a laser plane is proposed.

(3) A 3D reconstruction method for omnidirectional vision

system based on structured light in combination with

semantic segmentation. The proposed approach raises the

possibility of reconstructing environments with a single-

image capture. Simulation results have proven to be are

accurate and robust for various indoor scenes.

The remainder of this article is presented in five sec-

tions. The second section reviews the related work. The

third section provides a simulator overview. The fourth

section is the proposed calibration approach. The fifth

section is the proposed 3D reconstruction approach.

Finally, the conclusion is drawn in the sixth section.

Related work

This article presents a novel reconstruction method for

indoor scenes on a basis of the omnidirectional vision sys-

tem with structured light. The reconstruction method is

tested by means of the proposed simulator. The distinctive

advantage of our method is that with a single capture from

the camera, it is possible to recover both depth (employing

data from the structured light) and the structure of the

indoor environment (by semantic segmentation). However,

before moving to the reconstruction method itself (“3D

reconstruction of indoor environments” section), two pre-

liminary steps related to the simulation environment should

be considered. The section “Simulator” presents the simu-

lation environment and reveals its capability. The section

“Calibration of the vision system” is the proposed method

for extrinsic calibration between vision sensors.

Simulator

In real experiments, there is a measurement uncertainty,

which makes the comparison between methods more com-

plicated. Moreover, in real cases, it is difficult or not pos-

sible to estimate real values of some of the parameters, for

example, real location or orientation of the laser plane,

whereas inside the simulation environment, they are

known. In the last few decades, a wide variety of robotic

simulators have been developed commercially or in

research laboratories,17 resulting in considerable publica-

tion in this area. An exhaustive review is beyond the scope

of this article, so this section considers only those most

relevant to our article, namely the simulators supporting

omnidirectional cameras and structured light. Widely used

simulators as Gazebo18 and USARSim19 support laser plu-

gins but unfortunately, they do not include omnidirectional

cameras. In contrast, in works,20,21 authors managed to

integrate omnidirectional cameras to these simulators.

Authors superimposed images of the environment onto the

faces of a cube, after which they were able to use this as a

texture for creating a hyperbolic mirror or a fisheye camera.

However, such manipulations require certain programming

skills that could be problematic for some users. In recent

years, NVIDIA released the photorealistic robotics simula-

tor, namely NVIDIA Isaac Sim,22 and the latest version of

this simulator supports a fisheye camera. However, the use

of this simulator is limited to computers with NVIDIA

GPUs. Multiple platforms support is provided by programs

such as blender and unity.

To generate photorealistic synthetic images, in a couple

of works, blender was considered as the basis for the cre-

ation of omnidirectional vision systems.23,24 Blender is an

open-source suite of tools for 3D modeling, rendering, and

animation. However, it is not suited to programming tasks
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and communication with other programs, which restricts its

use in certain cases. More flexibility is provided by game

engines (e.g. unity), which support both programming

opportunities as well as realistic graphics and physics. By

taking an advantage of modern game engines, Bourke

released a publicly available fisheye camera within unity,25

supporting a variable FOV. Therefore, development based

upon the unity platform may capture omnidirectional

images of their 3D scenes. This camera model was also

considered in Kholodilin et al.16 The authors demonstrated

that modern game engines (e.g. unity) allow users to create

photorealistic virtual environments that are suitable for

testing theories before experiments are performed in real

conditions. However, the process of developing a new

scene is time-consuming and requires certain skills in unity.

To facilitate research in this field, in this work, we decided

to release the simulator, supporting the omnidirectional

camera and the structured light to the CV community. The

simulator has a developed user interface and customizable

sections. Therefore, it can be used independently of unity.

To the best of our knowledge, this is the first customizable

simulator, which targets the study of the omnidirectional

vision system with the laser illumination in indoor envir-

onments. No particular skills in unity are required to use

our simulator and it is installed in the same way any other

standard gaming application. If the functionality of the

built version of the simulator is insufficient, then the full

unity project is made available for users to modify to suit

their specific needs.

Calibration of the vision system

The calibration process was analyzed in Kholodilin et al.,16

and it focused on the calibration procedure itself and the

verification of the calibration results by mapping. How-

ever, the configuration of the vision system proposed in

Kholodilin et al.16 is not suitable for the 3D reconstruction

tasks, because the camera is located parallel to the floor. As

a result, part of the walls and the whole ceiling were out of

the FOV of the camera. In this article, we propose a vision

system in a different configuration and technique for its

extrinsic calibration. A configuration with the camera

located perpendicular to the floor provides visibility of all

elements of the indoor environment. With respect to the

calibration, we demonstrate that the proposed calibration

technique provides more flexibility without loss of relia-

bility and robustness.

3D reconstruction of indoor environments

Numerous approaches have been proposed for the 3D

reconstruction of the indoor environment. For example, a

digital representation of the scene can be generated with 3D

point clouds from a series of images.6 By considering com-

mon features between images is possible to determine cam-

era poses (Bundler) and subsequently, 3D point clouds can

be created. The performance of these methods depends on

being able to reliably detect features in the surroundings;

therefore, methods based on the passive vision systems

may fail for featureless, or for example, dark and reflective

environments.

Another approach to creating a digital representation of

the scene is to use depth cameras such as Microsoft’s

Kinect.26,27 However, a key limitation of the Kinect sensor

is the limited FOV. In an attempt to address these deficien-

cies, Tsai et al. presented a vision system with multiple

RGBD (Kinect) and digital single-lens reflex cameras.28

By merging the conventional images with the depth

images, authors were able to reconstruct the environment

even in featureless areas. From the results presented in their

work, it can be seen that even if multiple sensors are

involved, there can still be unreconstructed regions. This

makes the method less applicable in certain applications,

for example, mobile navigation. This problem might be

solved by integrating even more vision sensors to the sys-

tem, but this increases the computation and overall expense

of the vision system.

A wide horizontal FOV can be achieved by replacing

several Kinect sensors with a light detection and ranging

(LiDAR) sensor.6 This involves fewer elements in the

vision system, making it more reliable, but still, a single

LiDAR unit generally provides insufficient vertical infor-

mation. At the same time, vision systems with multiple

LiDARs are problematic due to their cost, size, and weight.

Several approaches based on a single LiDAR sensor have

attempted to address this problem.28–32 The general idea of

these works, which provide a cost-effective vision system

and achieve a wide vertical FOV, is that authors have

attempted to shift from rigid vision systems to more flex-

ible configurations by rotating the LiDAR sensor. This

makes it possible to extract more features of the environ-

ment with a single LiDAR unit. Even though these

LiDAR-based approaches provide a fully omnidirectional

depth-sensing capability, they are still a relatively costly

sensor for the indoor environment. A more cost-effective

and lightweight solution is achieved by using a structured

light approach.

A structured light solution is not only cost-effective and

lightweight but it also allows easy detection of projected

features by the camera and the subsequent calculation of

depth information from laser triangulation. This approach

provides a wide FOV while achieving portability and

affordability. Son et al. proposed a tiny palm-sized vision

sensor, which is composed of a fisheye camera, structured

light, and rotating motor. With the rotational movement, a

3D omnidirectional sensing capability is achieved.33 Par-

ticular attention needs to be made to the type of encoder

used, for example, magnetic encoders may suffer from

nonlinearity problems. Additionally, angular position mea-

surement error may adversely affect the reconstruction

results. De Ruvo et al. also proposed the vision system

based on a rotation platform.34 By ensuring accurate

Kholodilin et al. 3



control of the angular velocity, the authors achieved a high

precision 3D omnidirectional reconstruction. However, this

type of vision system has a relatively large and complex

structure, which is challenging to recreate. Moreover, both

methods described above are focused on a single recon-

struction and the reconstructed models are not textured.

To overcome this problem, Lian et al. proposed an omni-

directional vision system where a vertical laser sensor

acquires the geometrical data.7 The authors then merged

the reconstruction results with the textured data captured by

the omnidirectional camera. However, the reconstruction

process of the whole environment would be time-

consuming as additional movements of the mobile robot

are required. To reduce the reconstruction time, it is nec-

essary to consider other approaches.

The recent advancements in deep learning have been

applied to research on structure reconstruction of indoor

scenes, for example, layout recovery from panoramic

images.3,4 In doing so, it is possible to generate the 3D

structure of an indoor scene from an image captured from

a single position in space. The main limitation is that the

depth data are not involved in the reconstruction procedure.

The process of creating a reliable 3D digital model of the

indoor environment with less input data from the vision

sensors is still an active area of research.

Simulator overview

Need for simulation

One of the main goals of our simulation environment is to

provide researchers and engineers greater opportunities

when testing theories and algorithms involving omnidirec-

tional vision systems. Our simulation solution enables algo-

rithms without the need to simultaneously acquire the

hardware. Moreover, empowering omnidirectional vision

systems with CV capabilities (e.g. simultaneous localiza-

tion and mapping, path planning, and semantic segmenta-

tion) is becoming an increasingly important research

direction in the field of mobile robots. However, in real-

world applications, it might be difficult or even impossible

to generate ground truth data for comparative analysis with

the experiment data. The following issues may influence

the ground truth data generation: the drift of mobile robot

wheels, noise and drift of sensors, the accuracy of the

semantically labeled data, measurement uncertainty, and

so on. Taking into account all the abovementioned issues,

we built a high-fidelity simulation environment, which is

aimed at bridging the gap between simulation and reality, at

the same time making it relevant for CV researchers and

engineers. Our simulation environment allows experiments

to be performed in a cost-effective way in comparison to

real experiments. It is easier to set up, works faster, and is

more convenient to use than physical experiments. With the

proposed simulator, it is also possible to generate depth

data, semantically labeled data, and path data, which can

be tested within the photorealistic simulated indoor scenar-

ios. This opens up new opportunities for evaluating perfor-

mance across a diverse set of experiments.

Individual features

The proposed simulator can be simply installed and

configured on Windows, macOS as well as the Linux

operating systems. The simulator package includes

(1) interaction with scenes and objects, (2) communica-

tion with other programs through transmission control

protocol (internet protocol), and (3) fully implemented

applications related to the calibration of the vision system

as well as 2D/3D mapping. All these features allow

researchers to configure their own experimental setups

and design better algorithms for these purposes. An

attempt has been made to create realistic scenes by using

rendering capabilities such as light sources, reflections,

and shadows. Figure 1 shows a snapshot taken by our

simulator, illustrating these rendering capabilities.

Figure 1. Several modes are supported by the simulator. The
image above shows ordinary mode. The image below shows
semantic labeling mode and depth mode. The middle image shows
zoomed sections of the main screen.
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Capabilities

The simulator consists of several screens: simulation, cali-

bration, and measurement. Simulation is the main screen

where experiments take place (see Figure 1). Elements

included in the simulation can be configured and controlled

with the panels on the left and right. For example, changing

the resolution of the camera, its FOV, activating/changing/

moving objects, tracking of the mobile robot, and so on.

The calibration screen consists of a checkerboard pat-

tern presented on a 3D panel as seen from the virtual cam-

era point of view (whose location and resolution can be

dynamically adjusted). The intrinsic calibration of the lens

is achieved by interactively moving the camera or checker-

board pattern (see Figure 2). As with the simulation screen,

it supports changing the resolution of the camera, its FOV,

and changing the relative size of the checkerboard pattern.

The measurement screen includes the measurement tool,

which is highlighted in yellow in Figure 3. By moving this

tool, it is possible to measure distances from the camera to

certain objects in the simulated scene; these may or may not

be visible in the simulation screen. In Figure 3, this tool was

moved to the laser strip associated with the sofa.

Calibration method

System model

The system model was previously described in Kholodilin

et al.16 and only a brief overview is presented in this sec-

tion. The configuration of the proposed vision is different

(the camera is rotated, see Figure 4) and how this difference

affects the equations is explained in the following.

World coordinates of the laser plane (X, Y, Z) can be

obtained as follows

u

v

f ðrÞ

2
64

3
75� ½ rc

1 rc
2 rc

3 �½ rl
1 rl

2 rl
3 tl �

X

Y

Z

1

2
6666664

3
7777775
¼ 0 (1)

where u and v represent pixel coordinates and rc
1, rc

2, rc
3,

rl
1, rl

2, rl
3, and tl represent column vectors of the rotation

matrix of the camera and transformation matrix of the

laser plane, respectively. The polynomial f ðrÞ has the fol-

lowing form

f ðrÞ ¼ a0 þ a2r2 þ � � � þ aNrN (2)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� ucÞ2 þ ðv� vcÞ2

q
(3)

where ai are coefficients; N is the degree; and points uc and

vc are the center of the image.

The laser emitter has a rigid configuration, conse-

quently the distance to the camera is constant: along the

Z-axis in Figure 4(a) and along X-axis in Figure 4(b).

Taking into account the aforementioned criteria, for the

proposed vision system, equation (1) can be simplified as

follows

Figure 2. The calibration screen.
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u

v

f ðrÞ

2
64

3
75� ½ rc

1 rc
2 rc

3 �½ rl
2 rl

3 tl �

Y

Z

1

2
6664

3
7775 ¼ 0 (4)

Problem

In Kholodilin et al.,16 a novel calibration technique for

obtaining extrinsic parameters between the camera and the

laser plane was presented. This calibration method was

based on the box target and proved its robustness in

Figure 4. (a) Previous configuration and (b) proposed configuration.

Figure 3. The measurement screen.
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comparison with other calibration methods. This approach,

however, contains some limitations, namely it is not suited

to the configuration of the vision system considered in our

current work as we lose part of the target (see Figure 4(b))

required for the calibration procedure. In this section, we

consider an improved calibration technique and estimate its

robustness in comparison with our previous calibration

method.

Calibration procedure

The goal of the extrinsic calibration is to find parameters of

the rotation matrix of the camera and the transformation

matrix of the laser plane, respectively. In general form, this

optimization problem can be formulated as follows

minRc;Rl ;Tl f ðRc; ½Rl j Tl�Þ2

subject to f ðRc; ½Rl j Tl�Þ ¼

u

v

f ðrÞ

2
664

3
775� Rc ½Rl j Tl�

X

Y

1

2
664

3
775

Rc ¼ ½ rc
1 rc

2 rc
3 �

½Rl j Tl� ¼ ½ rl
2 rl

3 tl �

8>>>>>>>>>><
>>>>>>>>>>:

(5)

An improved calibration target was developed (see

Figure 5) for solving the optimization problem described

in equation (5). The main advantage of this target is its

versatility as it can be applied to various configurations

of a vision system. Another advantage is its flexibility as

it can be simply placed in front of the mobile robot. The

proposed target allows an extrinsic calibration to be per-

formed by only capturing a single snapshot, and this pro-

cedure is explained in the following.

Extrinsic calibration of the camera. This section explains the

process of obtaining parameters forming the camera rota-

tion matrix Rc as described in equation (5). To carry out the

calibration process to obtain camera extrinsic parameters,

first of all, pixel coordinates belonging to the border

(between white and black regions) of the target are pro-

jected by equation (4) to the world coordinate system (see

Figure 6(a)). After that for each parameter pitch, roll, and

yaw, the optimization is described as a series of equations

(6)–(8). The pitch is calculated when projected to the world

coordinates vectors AB and DC of the target collinear to

each other. This optimization problem can be formulated as

follows

minpitchf ðpitchÞ2

subject to f ðpitchÞ ¼ ABY

ABZ

� DCY

DCZ

8><
>: (6)

The yaw is calculated when projected to the world coordi-

nates vectors AB and DC of the target orthogonal to Y-axis.

This optimization problem can be formulated as follows

minyawf ðyawÞ2

subject to f ðyawÞ ¼ ABY

ABZ

� DCY

DCZ

8><
>: (7)

Once the pitch and yaw are known, it is possible to

calculate the roll. The roll can be found by minimization

of the slope of the vector CB, whereas pitch and yaw

obtained during previous steps are constant. This minimi-

zation problem can be written as follows

minrollf ðrollÞ2

subject to f ðrollÞ ¼ CBZ

CBY

8><
>: (8)

At this point, pixel coordinates belonging to the border

of the target can be projected by equation (4) to world

coordinates with the pitch, roll, and yaw determined during

the calibration procedure (see Figure 6(b)). Once the

Figure 5. The proposed calibration target.
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camera is calibrated, we can move to the calibration of the

laser plane.

Extrinsic calibration of the laser plane. This section outlines

the process of obtaining parameters forming the transfor-

mation matrix ½Rl j Tl� of the laser plane, which are part of

equation (5), whereas parameters of Rc are known and

constant. The extracted pixel coordinates of the laser

beam are projected by equation (4) to world coordinates

(see Figure 7(a)). After that for every parameter related

to the transformation matrix of the laser plane, the mini-

mization problem is formulated by a series of equations

(9)–(11).

The pitch is calculated when projected to the world coordi-

nates vectors EF and HG of the target collinear to each other.

This optimization problem can be formulated as follows

minpitchf ðpitchÞ2

subject to f ðpitchÞ ¼ EFY

EFZ

� EFY

EFZ

8><
>: (9)

Another parameter related with the Rl is the roll. The

roll can be found by minimization of the slope of the

vector GF. This minimization problem can be written as

follows

minrollf ðrollÞ2

subject to f ðrollÞ ¼ GFZ

GFY

8><
>: (10)

The last unknown parameter in the transformation

matrix of the laser plane represents the distance to the

laser plane. The real distance D1 between the left and

Figure 7. (a) Projection with unknown pitch, roll, and distance and (b) projection with known pitch, roll, and distance.

Figure 6. (a) Projection with unknown pitch and roll and (b) projection with known pitch, roll, and yaw.
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right sides of the target is known. The distance D2

between the sides of the target can be found experi-

mentally from the world coordinates of the laser.

Thus, the variable representing the distance to the

laser plane can be calculated as the difference between

D1 and D2. This minimization problem can be written

as follows

mindistf ðdistÞ2

subject to f ðdistÞ ¼ D1 � D2

D2 ¼
Y H þ Y G

2
� Y E þ Y F

2

0
@

1
A

8>>>>><
>>>>>:

(11)

The pixel coordinates of the laser beam can now be

projected by equation (4) to the world ones with the pitch,

roll, and distance to the laser plane, determined during the

extrinsic calibration (see Figure 7(b)).

Evaluation

Experimental setup. To evaluate the merits of the proposed

calibration technique as well as to determine the relative

quality and performance, it was compared with two other

calibration methods. The experimental setup is similar to

the one presented in Kholodilin et al.16 and is depicted in

Table 1. Method 1 is based on the box target and its cali-

bration technique was considered in Kholodilin et al.16

Method 2 is based on the checkerboard and its calibration

technique was considered in Xu et al.35 Firstly, the com-

parison of extrinsic parameters (Rc, Rl, Tl) was based on

the case where all calibration targets were visible (see

Figure 8). Secondly, the performance of the calibration

method was estimated for the configuration of the vision

system considered in this article (see Figure 9). For this

configuration, one side of the box target (method 1) was

not visible, thus the proposed method was compared only

with method 2. Thirty-five configurations of the vision

system were included in the experiment, where parameters

of the rotation matrixes of the camera and the laser plane

were varied but did not exceed 10�.

Results. Table 2 presents the mean absolute error and the

root means squared error for the comparative analysis

between the calibration methods. For configuration of

vision system #1, method 1 showed better results, followed

by the proposed method, and lastly method 2. For config-

uration of vision system #2, method 1 is no longer appli-

cable; thus among the other two methods, the proposed

method showed better results. It is also worthwhile men-

tioning that the proposed method is faster than method 2.

The average run time among all configurations for the pro-

posed method is almost 2.5 times faster than method 2.

Maximum absolute error (AE) presented in Table 2 relates

to the index of the particular experiment, which is pre-

sented in brackets. In “3D reconstruction” section for these

particular configurations, a visual analysis is presented

based on the 3D reconstruction.

Table 1. The experimental setup.

Representation of the target

Proposed Target with three sides
Method 1 Target with four sides
Method 2 Target with checkerboards

Features of the target
Proposed Size of the target is 1084.5 � 1084.5 mm
Method 1
Method 2 Pattern has 9 � 6 squares. Each square is 97 � 97 mm

Configuration of vision system #1
Proposed Distance to the left side of the target is 646 mm and to

the front side is 746 mmMethod 1
Method 2

Configuration of vision system #2
Proposed Distance to the left side of the target is 646 mm and to

the front side is 1346 mmMethod 2
Image resolution

Proposed 1920 � 1920 pixels
Method 1
Method 2

Figure 8. Configuration of the vision system #1. (a) method 1, (b) proposed, and (c) method 2.
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Discussion

In the article,16 it was shown that for configuration of

vision system #1, method 1 works better than method 2.

The current work aims at evaluating the proposed method

against other calibration techniques. It was assumed that by

modifying the calibration target and calibration technique

of method 1, it would be possible to achieve similar cali-

bration results. Contrary to the expectations, the calibration

results of method 1 were better than both other methods as

depicted in Table 2. Thus, for configuration #1, it is better

to use method 1. The experiment results of the proposed

method are not as good as of method 1, but the proposed

method is more universal and can be implemented for dif-

ferent vision system configurations. It is also worthwhile

mentioning that for both configuration #1 and configura-

tion #2, the proposed method showed better calibration

results than method 2, which is based on the checkerboard

patterns.

Table 2. The experiment results.

Rotation matrix of the camera Transformation matrix of the laser parameters

Pitch, deg Roll, deg Yaw, deg Pitch, deg Roll, deg Distance, mm

Configuration of vision system #1
MAE
Proposed 0.05 0.11 0.06 0.16 0.09 2.81
Method 1 0.05 0.03 0.04 0.05 0.05 1.89
Method 2 0.10 0.13 0.08 0.27 0.06 3.32
RMSE
Proposed 0.05 0.13 0.07 0.18 0.11 2.97
Method 1 0.05 0.06 0.04 0.08 0.09 2.01
Method 2 0.14 0.15 0.10 0.35 0.25 3.89
Configuration of vision system #2
MAE
Proposed 0.10 0.25 0.05 0.18 0.06 3.68
Method 2 0.18 0.38 0.12 0.21 0.24 3.89
RMSE
Proposed 0.13 0.31 0.07 0.25 0.08 4.11
Method 2 0.26 0.42 0.17 0.28 0.49 5.14
Maximum AE
Proposed 0.40 (#6) 0.69 (#19) 0.17 (#3) 0.78 (#19) 0.16 (#16) 7.24 (#10)
Method 2 0.86 (#10) 0.76 (#9) 0.66 (#12) 0.81 (#34) 2.54 (#34) 14.64 (#12)

MAE: mean absolute error; AE: absolute error; RMSE: root mean squared error.

Figure 9. Configuration of the vision system #2. (a) Proposed and (b) method 2.
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3D reconstruction method

Once the vision system was calibrated, we can consider the

reconstruction of the 3D structure of the indoor environ-

ment. Our method includes several key steps, which are

shown in Figure 10. First of all, interesting regions in the

input image are segmented with semantic labels. Secondly,

images of these objects are extracted and transformed so as

to be imaged in a perspective projection. After that, the

depth information is recovered based on the laser data.

Finally, the 3D model is assembled. These steps are

described in more detail in the following.

Semantic segmentation

One of the benefits of our simulator is that it can provide

automatic ground truth labeling for the main parts of

the scene (see Figure 10). The problem with the manual

labeling is that the process itself is time-consuming as

images may contain a wide range of elements, this is espe-

cially so for omnidirectional images. This section demon-

strates the capacity of the automatic ground truth labeling

by training a semantic segmentation network using deep

learning.

Feature extraction. There are a variety of features for better

image understanding, which, in general, can be named as

hand-crafted features and learned features. Hand-crafted

features are extracted manually using an algorithm defined

by an expert. Learned features can be extracted with the use

of convolutional neural networks (CNNs).36,37

CNNs architectures are used in fields such as image

recognition, image annotation, and image retrieval..38 As

for image classification, CNN architecture consists of sev-

eral convolutional layers followed by one or more fully

connected layers.39 Image feature extraction based on

CNNs has demonstrated its effectiveness in a number of

applications.40–42

In this article, the goal of the CNN is the detection of

features of an indoor environment (floor, ceiling, walls, and

doors) by labeling them with different colors (semantic

segmentation). He et al. pointed out that the deeper the

neural network, the more difficult it is to train it.43 This

problem was solved by using the residual learning frame-

work, namely ResNet. Experimental results showed a bet-

ter performance in training and testing on the ImageNet

Large Scale Visual Recognition Challenge 2015 validation

set with a top one recognition accuracy of about 80%.43 An

operating principle of a residual network is that residual

functions (instead of unreferenced functions) with refer-

ence to the layer inputs should be learned by each layer

of the network. These architectures are easier to optimize

and it is possible to obtain improved accuracy by signifi-

cantly increasing the depth.43 Thus, these networks were

considered in our work.

Experimental setup. The data set was generated by our simu-

lator and contains 300 labeled images. About 80% of the data

set was partitioned into training data and the remaining 20%
was used as test data. This data set is composed of 240-by-

240-pixel images and tested by two networks: ResNet18 and

ResNet50. Networks were trained with the use of a single

CPU with a clock speed equal to 2.5 GHz; 10G of RAM, and

the graphics processing unit (GPU) was an Intel HD Graphics

4000, which has 1.5G memory. We used 64-bit macOS as the

operating system.

Results. Figure 11 shows the behavior of the ResNets.

Table 3 indicates that the performance of the ResNet18 is

not inferior to ResNet50, but at the same time, it took less

time to train ResNet18 and the network size is lower in

comparison with ResNet50. Figure 12 shows some of the

output results of the trained networks. By visual represen-

tation, it can be seen that both networks were trained in an

accurate way by comparing with the ground truth.

Figure 10. From a single fisheye snapshot to the 3D model of the indoor environment.
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Discussion. It was demonstrated that the labeled data gener-

ated by our simulator are suitable for training neural net-

works. The automatic labeling itself can significantly

simplify the process of collecting data for testing theories

and verifying experiment results. It was also found that by

using deep learning, the semantic segmentation network

can be well-trained with a modest number of the network

layers. This approach is additionally fast and does not

increase the output network size.

Perspective projection

Preparation. Once the semantic segmentation network was

trained, the portion of interest can be extracted from the

input fisheye image. First of all, for every element (floor,

ceiling, walls, and doors), masks are created (see Figure 10).

It is worthwhile mentioning that the reconstruction method

proposed in the article allows one to obtain the 3D model of

the indoor scene within the visible region of the laser beam

associated with the walls in the fisheye image (see Fig-

ure 10). Next, with the previously created masks and the

working region of the laser beam, it is possible to extract

the interesting portions of the scene (see Figure 13). Finally,

when the elements of interest are extracted from the fisheye

image, the perspective projections can be created.

Perspective projection. The process of creating the perspec-

tive projection image is performed in the reverse direction,

that is, for every pixel (or subpixel for anti-aliasing) in the

perspective image plane, one needs to find the best RGB

estimate in the fisheye image.

The high-level process is as follows:

� Initialize the virtual camera, located at the origin,

looking down the y-axis and with a horizontal and

vertical FOV of 90�, see Figure 14.

� For every pixel (i, j) in the camera, the projection

plane derives the corresponding 3D vector P in

world coordinates by equation (12), see Figure 15.

Pðx; y; zÞ ¼ 2i

w
� 1

� �
; 1;

2j

h
� 1

� �� �
(12)

� Rotate this vector P about the axes corresponding to

roll, pitch, and yaw to orientate the perspective cam-

era as desired, call this vector P0.
� Calculate the angles ø and q by equation (13), see

Figure 16.

q ¼ atan2ðP}
z ;P

}
xÞ; ø ¼ atan2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P}2

x þ P}2
z

q
;P}

yÞ (13)

Determine the image index (I, J) in normalized fisheye

image coordinates given these q and ø and the linear rela-

tionship between ø and radius r in a fisheye projection, see

Figure 17. This gives the RGB value to assign to pixel (i, j)

in the perspective image.

I ¼ 2� cosðqÞ=f max; J ¼ 2� sinðqÞ=f max (14)

where f max is the FOV of the fisheye lens.

Results of the perspective projection are shown in

Figure 13.

Figure 11. Neural network performance evaluation. ResNet18 is shown in red color and ResNet50 is shown in blue color.

Table 3. The evaluation of the trained networks.

Network Validation accuracy Training time Network size

ResNet18 96.60% 129 min 11 sec 103.4 MB
ResNet50 96.65% 284 min 59 sec 236.6 MB

12 International Journal of Advanced Robotic Systems



Figure 12. Training results.

Figure 13. Upper row shows extracted regions of the indoor environment (floor, ceiling, walls, and doors) with the visible laser beam.
Lower row shows the corresponding perspective projection for extracted regions of the indoor environment.

Figure 14. Initialization of the virtual camera. Figure 15. Perspective image.
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3D reconstruction

Last step is related to the reconstruction of the indoor envi-

ronment. For reconstructing the depth of the scene several

steps are required. The image coordinates of the laser beam

are extracted and distances to the corresponding walls and

doors are calculated by equation (4). Once the location of

the wall is known, it is possible to calculate distances to the

floor and ceiling. Now, the labeled image regions between

the parts of interest can be extracted as follows:

� Floor. Region between the magenta color and yel-

low color (see Figure 10).

� Ceiling. Region between the magenta color and aqua

color (see Figure 10).

In a similar fashion to the laser plane, distances to the

floor and ceiling can be successfully found by triangulation.

The distance from the mobile robot to the particular wall

along Y-axis is known and constant. Taking into account the

aforementioned criteria, an equation for calculating world

coordinates of the wall and ceiling can be written as follows

u

v

f ðrÞ

2
64

3
75� ½ rc

1 rc
2 rc

3 �½ rl
1 rl

3 tl �

X

Z

1

2
6664

3
7775 ¼ 0 (15)

By our reconstruction method, it is also possible to recon-

struct a corner. For this procedure, the endpoints of the laser

beam have to be extracted. These endpoints are used to divide

walls in a corner for two independent meshes. Then based on

these endpoints, orientation for each of the walls in a corner is

calculated. Finally, the 3D model can be assembled from the

segmented parts of the scene in combination with the corre-

sponding distances. Figure 18 shows individual recon-

structed 3D models as well as a global map. Simulation

results show that the proposed reconstruction technique pro-

vides accurate and robust 3D models for different configura-

tions of indoor scenes. Results also show that by using a

single-input image, it is possible to reconstruct not only the

layout of the indoor environment but also the depth as well.

Table 2 presents indices associated with each particular

experiment with the maximum AE. Figure 18 illustrates the

corresponding 3D models for some of these configurations.

The goal is to compare calibration methods with a visual

analysis. For configuration 6, the reconstruction models are

quite similar. However, from other configurations, it can be

seen that reconstruction results are better for the proposed

method.

Conclusion and future work

This article presents a photorealistic simulator applicable to

various applications of CV. With the aid of the proposed

simulator, two practical applications were studied, namely

extrinsic calibration of the vision system and 3D recon-

struction of the indoor environment. As far as we know,

this is the first simulator based on an omnidirectional

camera and structured light. This provides controlled envi-

ronmental conditions, which might be not available in real-

world cases and it opens new opportunities in testing

theories and experiments. We strongly believe that this

simulator can be of assistance to researchers and enable

those without the requisite hardware to perform experi-

ments in a safe manner.

As for the proposed calibration and reconstruction tech-

niques, the processes themselves are straightforward.

Moreover, to implement the proposed techniques, only one

input image is required. The simulation results showed that

our calibration method outperforms the existing state-of-

the-art method and our reconstruction method is able to

Figure 16. Transformation between world and camera
coordinates.

Figure 17. Transformation to the image coordinates.
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reconstruct not only the layout of the indoor scene but also

depth information.

Further work will focus on the compatibility of the data

trained within the simulation environment to the real cases.

One of the key advantages of employing virtual environ-

ments is their ability to represent a diverse and dynamic

range of real-world conditions. To create more realistic

scenarios, it is planned to extend the capability of the cur-

rent version of the simulator by adding pedestrians and by

creating a manual as well as an automated environment

generation system. This will mean that users will be able

to interact with standardized blocks representing elements,

such as walls, floor, ceiling, furniture, or obstacles. This

approach will easily allow the generation of a wide variety

of training and testing environments. It is planned to pro-

vide a smooth transition between synthetic data and appear-

ance in the real world by deep learning. Moreover, recent

work by Sadeghi et al. showed that transfer from virtual

environments to real cases is possible even without a strong

degree of photorealism.44
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